Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Transl Med ; 21(1): 650, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743503

RESUMO

BACKGROUND: Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS: Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS: Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS: These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Humanos , Animais , Ratos , Suínos , Porco Miniatura , Degeneração Retiniana/terapia , Neurônios , Instituições de Assistência Ambulatorial
2.
Toxicol Pathol ; 51(6): 390-396, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-38293937

RESUMO

In the last decade, numerous initiatives have emerged worldwide to reduce the use of animals in drug development, including more recently the introduction of Virtual Control Groups (VCGs) concept for nonclinical toxicity studies. Although replacement of concurrent controls (CCs) by virtual controls (VCs) represents an exciting opportunity, there are associated challenges that will be discussed in this paper with a more specific focus on anatomic pathology. Coordinated efforts will be needed from toxicologists, clinical and anatomic pathologists, and regulators to support approaches that will facilitate a staggered implementation of VCGs in nonclinical toxicity studies. Notably, the authors believe that a validated database for VC animals will need to include histopathology (digital) slides for microscopic assessment. Ultimately, the most important step lies in the validation of the concept by performing VCG and the full control group in parallel for studies of varying duration over a reasonable timespan to confirm there are no differences in outcomes (dual study design). The authors also discuss a hybrid approach, whereby control groups comprised both concurrent and VCs to demonstrate proof-of-concept. Once confidence is established by sponsors and regulators, VCs have the potential to replace some or all CC animals.


Assuntos
Desenvolvimento de Medicamentos , Patologia , Animais , Grupos Controle , Projetos de Pesquisa
3.
Regul Toxicol Pharmacol ; 138: 105327, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586472

RESUMO

The nonhuman primate (NHP) has always been a limited resource for pharmaceutical research with ongoing efforts to conserve. This is due to their inherent biological properties, the growth in biotherapeutics and other modalities, and their use in small molecule drug development. The SARS-CoV-2 pandemic has significantly impacted the availability of NHPs due to the immediate need for NHPs to develop COVID-19 vaccines and treatments and the China NHP export ban; thus, accelerating the need to further replace, reduce and refine (3Rs) NHP use. The impact of the NHP shortage on drug development led DruSafe, BioSafe, and the United States (U.S.) Food and Drug Administration (FDA) Center for Drug Evaluation and Research (CDER) to discuss this issue at their 2021 annual meeting. This meeting identified areas to further the 3Rs in NHP use within the current nonclinical safety evaluation regulatory framework and highlighted the need to continue advancing alternative methods towards the aspirational goal to replace use of NHPs in the long term. Alignment across global health authorities is necessary for implementation of approaches that fall outside existing guidelines. This article captures the proceedings from this meeting highlighting current best practices and areas for 3Rs in NHP use.


Assuntos
COVID-19 , Primatas , Animais , Humanos , Estados Unidos , United States Food and Drug Administration , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2
4.
Toxicol Pathol ; 49(6): 1164-1173, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34060353

RESUMO

The approach undertaken to deliver a Good Laboratory Practice (GLP) validation of whole slide images (WSIs) and the associated workflow for the digital primary evaluation and peer review of a GLP-compliant rodent inhalation toxicity study is described. The contract research organization (CRO) undertook validation of the slide scanner, scanner software, and associated database software. This provided a GLP validated environment within the database software for the primary histopathologic evaluation using WSI and viewed with the database software web viewer. The CRO also validated a cloud-based digital pathology platform that supported the upload and transfer of WSI and metadata to a cache within the sponsor's local area network. The sponsor undertook a separate GLP validation of the same cloud-based digital pathology platform to cover the download and review of the WSI. The establishment of a fit-for-purpose GLP-compliant workflow for WSI and successful deployment for the digital primary evaluation and peer review of a large GLP toxicology study enabled flexibility in accelerated global working and potential future reuse of digitized data for advanced artificial intelligence and machine learning image analysis.


Assuntos
Inteligência Artificial , Roedores , Animais , Processamento de Imagem Assistida por Computador , Revisão por Pares , Software
5.
Arch Toxicol ; 95(12): 3651-3664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34623454

RESUMO

Regulatory toxicology seeks to ensure that exposures to chemicals encountered in the environment, in the workplace, or in products pose no significant hazards and produce no harm to humans or other organisms, i.e., that chemicals are used safely. The most practical and direct means of ensuring that hazards and harms are avoided is to identify the doses and conditions under which chemical toxicity does not occur so that chemical concentrations and exposures can be appropriately limited. Modern advancements in pharmacology and toxicology have revealed that the rates and mechanisms by which organisms absorb, distribute, metabolize and eliminate chemicals-i.e., the field of kinetics-often determine the doses and conditions under which hazard, and harm, are absent, i.e., the safe dose range. Since kinetics, like chemical hazard and toxicity, are extensive properties that depend on the amount of the chemical encountered, it is possible to identify the maximum dose under which organisms can efficiently metabolize and eliminate the chemicals to which they are exposed, a dose that has been referred to as the kinetic maximum dose, or KMD. This review explains the rationale that compels regulatory toxicology to embrace the advancements made possible by kinetics, why understanding the kinetic relationship between the blood level produced and the administered dose of a chemical is essential for identifying the safe dose range, and why dose-setting in regulatory toxicology studies should be informed by estimates of the KMD rather than rely on the flawed concept of maximum-tolerated toxic dose, or MTD.


Assuntos
Exposição Ambiental/legislação & jurisprudência , Toxicocinética , Toxicologia/legislação & jurisprudência , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/prevenção & controle , Substâncias Perigosas/administração & dosagem , Substâncias Perigosas/toxicidade , Humanos , Dose Máxima Tolerável , Testes de Toxicidade/métodos
6.
Regul Toxicol Pharmacol ; 122: 104897, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33639256

RESUMO

Benzoic acid (BA) was administered in the diet to male and female Sprague Dawley Crl:CD(SD) rats in an OECD Test Guideline 443 Extended One-Generation Reproductive Toxicity (EOGRT) study to test for effects that may occur as a result of pre- and postnatal exposure. The study included cohorts of F1 offspring to evaluate potential effects of benzoic acid on reproduction, the developing immune system, and the developing neurological system with the inclusion of learning and memory assessments. Benzoic acid was incorporated in the diet at concentrations of 0, 7,500, 11,500, and 15,000 mg/kg diet (ppm). These concentrations were selected based on the results of preliminary studies, and, based on average food consumption, were intended to supply BA doses of approximately 0, 500, 750, and 1000 mg/kg bw/day. To avoid exceeding these target dose levels, the dietary concentrations were adjusted (based on historical control body weight and food consumption data) to maintain the target mg/kg bw/day dose levels during those life periods when food intake per unit of body weight was increased to support milk production by females (gestation and lactation) and rapid pup growth (post-weaning). In the parental (F0) generation, survival, clinical observations, organ weights, pathology, hematology, serum chemistry, urinalysis, and bile acids were unaffected by BA administration. Reproductive parameters were also unaffected by BA administration. In the F1 generation, survival, growth and developmental landmarks, organ weights, pathology, immunotoxicity assessment, and neurotoxicity and neurobehavioral parameters such as auditory startle response, locomotor activity, learning and memory assessments were unaffected by BA administration, as were clinical pathology (hematology, serum chemistry, urinalysis, bile acids and thyroid hormones) and reproductive performance. Similarly, no adverse effects or systemic toxicity were observed in the F2 generation. Overall, the highest dietary concentration (15,000 ppm), providing a dosage of approximately 1000 mg/kg bw/day, was the NOAEL for benzoic acid in this EOGRT study.


Assuntos
Ácido Benzoico/farmacologia , Conservantes de Alimentos/farmacologia , Genitália/efeitos dos fármacos , Animais , Peso Corporal , Relação Dose-Resposta a Droga , Feminino , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
Int J Toxicol ; 39(5): 433-442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32787636

RESUMO

Currently, off-label continuous administration of inhaled epoprostenol is used to manage hemodynamics during mitral valve surgery. A toxicology program was developed to support the use of inhaled epoprostenol during mechanical ventilation as well as pre- and postsurgery via nasal prongs. To support use in patients using nasal prongs, a Good Laboratory Practice (GLP), 14-day rat, nose-only inhalation study was performed. No adverse findings were observed at ∼50× the dose rate received by patient during off-label use. To simulate up to 48 hours continuous aerosol exposure during mechanical ventilation, a GLP toxicology study was performed using anesthetized, intubated, mechanically ventilated dogs. Dogs inhaled epoprostenol at approximately 6× and 13× the dose rate reported in off-label human studies. This novel animal model required establishment of a dog intensive care unit providing sedation, multisystem support, partial parenteral nutrition, and management of the intubated mechanically ventilated dogs for the 48-hour duration of study. Aerosol was generated by a vibrating mesh nebulizer with novel methods required to determine dose and particle size in-vitro. Continuous pH 10.5 epoprostenol was anticipated to be associated with lung injury; however, no adverse findings were observed. As no toxicity at pH 10.5 was observed with a formulation that required refrigeration, a room temperature stable formulation at pH 12 was evaluated in the same ventilated dog model. Again, there were no adverse findings. In conclusion, current toxicology findings support the evaluation of inhaled epoprostenol at pH 12 in surgical patients with pulmonary hypertension for up to 48 hours continuous exposure.


Assuntos
Anti-Hipertensivos/toxicidade , Epoprostenol/toxicidade , Administração por Inalação , Aerossóis , Animais , Anti-Hipertensivos/química , Cães , Desenvolvimento de Medicamentos , Epoprostenol/química , Feminino , Concentração de Íons de Hidrogênio , Hipertensão Pulmonar/tratamento farmacológico , Pulmão/anatomia & histologia , Pulmão/efeitos dos fármacos , Masculino , Nebulizadores e Vaporizadores , Ratos Sprague-Dawley , Respiração Artificial , Testes de Toxicidade/métodos
8.
Regul Toxicol Pharmacol ; 108: 104441, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31425728

RESUMO

PQ Birch represents an allergen-specific immunotherapy for the treatment of birch pollinosis. It consists of native birch pollen extract chemically modified with glutaldehyde adsorbed to L-tyrosine in its microcrystalline form with addition of the adjuvant Monophosphoryl Lipid A (MPL®). A nonclinical safety testing strategy was designed based upon interpretation of current legislation and regulatory intelligence and comprised genotoxicity studies (bacterial reverse mutation and Chinese hamster ovary micronucleus assays), a rat repeat dose toxicology study and a rabbit local tolerance study. No safety findings of concern were found. Thus, no evidence of genotoxicity was found. Relatively minor, immunostimulatory effects were seen following repeated subcutaneous dosing (once every 2 weeks for 13 weeks) as reversible increased white cell count (notably neutrophils), increased globulin level (resulting in decreased albumin/globulin [A/G] ratio) and increased fibrinogen, as well as minor dose site reaction in the form of inflammatory cell infiltrate. These findings are likely due to the immunostimulatory nature of MPL® and/or the presence of L-tyrosine within the adjuvanted vaccine. Similar dose site inflammatory changes to the injected formulation were also noted in the rabbit local tolerance study.


Assuntos
Adjuvantes Imunológicos/toxicidade , Betula/imunologia , Imunoterapia/efeitos adversos , Lipídeo A/análogos & derivados , Pólen/imunologia , Tirosina/toxicidade , Animais , Células CHO , Cricetulus , Feminino , Lipídeo A/toxicidade , Masculino , Testes de Mutagenicidade , Coelhos , Ratos Wistar , Rinite Alérgica Sazonal/terapia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Pele/efeitos dos fármacos
9.
Regul Toxicol Pharmacol ; 81 Suppl 2: S59-S81, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27793746

RESUMO

The objective of the study was to characterize the toxicity from sub-chronic inhalation of test atmospheres from the candidate modified risk tobacco product (MRTP), Tobacco Heating System version 2.2 (THS2.2), and to compare it with that of the 3R4F reference cigarette. A 90-day nose-only inhalation study on Sprague-Dawley rats was performed, combining classical and systems toxicology approaches. Reduction in respiratory minute volume, degree of lung inflammation, and histopathological findings in the respiratory tract organs were significantly less pronounced in THS2.2-exposed groups compared with 3R4F-exposed groups. Transcriptomics data obtained from nasal epithelium and lung parenchyma showed concentration-dependent differential gene expression following 3R4F exposure that was less pronounced in the THS2.2-exposed groups. Molecular network analysis showed that inflammatory processes were the most affected by 3R4F, while the extent of THS2.2 impact was much lower. Most other toxicological endpoints evaluated did not show exposure-related effects. Where findings were observed, the effects were similar in 3R4F- and THS2.2-exposed animals. In summary, toxicological changes observed in the respiratory tract organs of THS2.2 aerosol-exposed rats were much less pronounced than in 3R4F-exposed rats while other toxicological endpoints either showed no exposure-related effects or were comparable to what was observed in the 3R4F-exposed rats.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biologia Computacional , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/fisiopatologia , Pneumonia/prevenção & controle , Ratos Sprague-Dawley , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/fisiopatologia , Medição de Risco , Fumaça/efeitos adversos , Fumar/genética , Biologia de Sistemas , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
10.
Regul Toxicol Pharmacol ; 81 Suppl 2: S82-S92, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27866933

RESUMO

Modified-risk tobacco products (MRTP) are designed to reduce the individual risk of tobacco-related disease as well as population harm compared to smoking cigarettes. Experimental proof of their benefit needs to be provided at multiple levels in research fields. Here, we examined microRNA (miRNA) levels in the lungs of rats exposed to a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2) in a 90-day OECD TG-413 inhalation study. Our aim was to assess the miRNA response to THS2.2 aerosol compared with the response to combustible cigarettes (CC) smoke from the reference cigarette 3R4F. CC smoke exposure, but not THS2.2 aerosol exposure, caused global miRNA downregulation, which may be explained by the interference of CC smoke constituents with the miRNA processing machinery. Upregulation of specific miRNA species, such as miR-146a/b and miR-182, indicated that they are causal elements in the inflammatory response in CC-exposed lungs, but they were reduced after THS2.2 aerosol exposure. Transforming transcriptomic data into protein activity based on corresponding downstream gene expression, we identified potential mechanisms for miR-146a/b and miR-182 that were activated by CC smoke but not by THS2.2 aerosol and possibly involved in the regulation of those miRNAs. The inclusion of miRNA profiling in systems toxicology approaches increases the mechanistic understanding of the complex exposure responses.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Pneumonia/prevenção & controle , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biologia Computacional , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Masculino , MicroRNAs/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/genética , Ratos Sprague-Dawley , Medição de Risco , Fumaça/efeitos adversos , Fumar/genética , Fatores de Tempo , Toxicogenética , Transcriptoma/efeitos dos fármacos
11.
Stat Med ; 33(7): 1162-75, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24123309

RESUMO

Many dose-response studies collect data on correlated outcomes. For example, in developmental toxicity studies, uterine weight and presence of malformed pups are measured on the same dam. Joint modeling can result in more efficient inferences than independent models for each outcome. Most methods for joint modeling assume standard parametric response distributions. However, in toxicity studies, it is possible that response distributions vary in location and shape with dose, which may not be easily captured by standard models. To address this issue, we propose a semiparametric Bayesian joint model for a binary and continuous response. In our model, a kernel stick-breaking process prior is assigned to the distribution of a random effect shared across outcomes, which allows flexible changes in distribution shape with dose shared across outcomes. The model also includes outcome-specific fixed effects to allow different location effects. In simulation studies, we found that the proposed model provides accurate estimates of toxicological risk when the data do not satisfy assumptions of standard parametric models. We apply our method to data from a developmental toxicity study of ethylene glycol diethyl ether.


Assuntos
Teorema de Bayes , Modelos Estatísticos , Medição de Risco/métodos , Toxicologia/métodos , Animais , Simulação por Computador , Etil-Éteres/toxicidade , Etilenoglicóis/toxicidade , Feminino , Cadeias de Markov , Camundongos , Método de Monte Carlo , Tamanho do Órgão , Gravidez , Útero/patologia
12.
Eur J Pharmacol ; 968: 176408, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38367684

RESUMO

We have developed a diphtheria toxin-based recombinant human CCR4-IL2 bispecific immunotoxin (CCR4-IL2-IT) for targeted therapy of cutaneous T-cell lymphoma (CTCL). CCR4-IL2-IT demonstrated superior efficacy in an immunodeficient mouse CTCL model. Recently, we have compared the in vivo efficacy of CCR4-IL2-IT versus Brentuximab (FDA approved leading drug in CTCL market) in the same immunodeficient mouse CTCL model. The comparison demonstrated that CCR4-IL2-IT was significantly more effective than Brentuximab. In this study, we have performed non-GLP (Good Laboratory Practice) toxicology, pharmacokinetics, immunogenicity studies of CCR4-IL2-IT in both rats and minipigs. CCR4-IL2-IT demonstrated excellent safety profiles in both rats and minipigs. The maximum tolerated dose of CCR4-IL2-IT was determined as 0.4 mg/kg in both rats and minipigs. Complete blood count and chemistry analysis did not show significant difference for all measured parameters between the blood samples of pre-injection versus post-injection from the five-day toxicology studies of CCT4-IL2-IT in both rats and minipigs. Histology analysis did not show difference between the PBS treatment group versus CCR4-IL2-IT treatment group at 50 µg/kg in both rats and minipigs. The half-life of CCR4-IL2-IT was determined as about 45 min in rats and 30 min in minipigs. The antibodies against CCR4-IL2-IT were detected in about two weeks after CCR4-IL2-IT treatment. CCR4-IL2-IT did not induce cytokine release syndrome in a peripheral blood mononuclear cell derived humanized mouse model. The depletion of CCR4+ cell and CD25+ cell (two target cell populations of CCR4-IL2-IT) was observed in minipigs. The excellent safety profile promoted us to further develop CCR4-IL2-IT towards clinical trials.


Assuntos
Antineoplásicos , Imunotoxinas , Camundongos , Ratos , Humanos , Animais , Suínos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Porco Miniatura , Interleucina-2 , Leucócitos Mononucleares , Receptores CCR4 , Anticorpos Monoclonais/farmacologia , Camundongos SCID , Antineoplásicos/uso terapêutico
13.
J Toxicol Pathol ; 26(3): 283-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24155561

RESUMO

A one-time oral gavage can be enough to cause of alveologenic edema with higher expression of AQP-1 and -4 than that with repeated-dose oral gavage, which caused both profound perivascular edema and hydrostatic pressure edema, while AQP-5 was similarly expressed. The alteration of AQPs expression was probably related to alveolar fluid clearance across the alveolar and bronchiolar epithelium in different stages of lung injury. The results clarified the type of lung edema in acute and sub-chronic toxicity studies without treatment related effect of tested material. The pathogenesis of pulmonary edema due to oral gavage toxicological study is associated with the cellular immune response to the reflux materials. Mast cell and leukocyte accumulation may contribute to increase vascular permeability leading to permeability edema. The increase in alveolar septum epithelium, perivascular and peribronchial cuffing, accumulation alveolar lipid containing macrophage and medial hyperplasia of the pulmonary artery might have been caused to increase airway resistance, which resulted in hydrostatic pressure edema.

14.
Reprod Toxicol ; 119: 108424, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336333

RESUMO

To evaluate the reproductive toxicity of gene modified rice generated by introducing phytoene synthase (Psy) and bacterial phytoene desaturase (CrtI) from maize and Erwinia uredovora, Wistar rats were allocated into 3 groups and fed with Psy and CrtI gene modified rice mixture diet (GM group), non-gene modified rice mixture diet (non-GM group), and AIN-93 diet (Blank control group) from parental generation (F0) to the offsprings (F1). GM rice, Heijinmi (HJM) and Non-GM rice, Heishuai (HS), were both formulated into diets at ratios of 73.5% and 75.5% according to the AIN93 diet for rodent animals, respectively. Relative to the non-GM group, no biologically relevant differences were observed in GM group rats concerning reproductive performance such as fertility rate, gestation rate, mean duration, hormone level, and reproductive organ pathology. The developmental parameters results were not significantly different from the non-GM group such as body weight, food consumption, developmental neurotoxicity, behavior, hematology, and serum chemistry. In terms of immunotoxicity, the IgG indicators of offspring from the GM group improved in contrast with the non-GM group. Additional gut flora analysis of F0 generation rats resulted as that the treatment elicited an increased gut microflora diversity of F0 rats. And no horizontal gene transfer of Psy and CrtI genes in rats fed a GM rice HJM diet. In conclusion, we found no adverse effects related to GM rice in the extended one-generation reproductive toxicity study, indicating that GM rice is a safe alternative for its counterpart rice regarding reproductive toxicity.


Assuntos
Microbioma Gastrointestinal , beta Caroteno , Ratos , Animais , Ratos Wistar , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/efeitos adversos , Reprodução
15.
Food Chem Toxicol ; 176: 113800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100235

RESUMO

LPM6690061 is a novel compound with 5-HT2A receptor antagonist and inverse agonist activities. To support the clinical trial and marketing application of LPM6690061, a series of pharmacology and toxicology studies have been conducted. In vitro and in vivo pharmacology studies showed that LPM6690061 had high inverse agonism and antagonism activities against human 5-HT2A receptors, and demonstrated significant antipsychotic-like effects in two rat models: the DOI-induced head-twitch model and the MK-801-induced hyperactivity model, which was more effective than the control drug pimavanserin. LPM6690061 did not have detectable side effects on the neurobehavioral activities and respiratory function in rats, or on the ECG or blood pressure in dogs at the doses of 2 and 6 mg/kg. The half maximal inhibitory concentration (IC50) of LPM6690061 for inhibiting hERG current was 1.02 µM. Three in vivo toxicology studies were conducted. In the single dose toxicity study in rats and dogs, the maximum tolerated dose of LPM6690061 was 100 mg/kg. In the 4-week repeat dose toxicity study in rats, the main detectable toxic reactions of LPM6690061 included moderate artery wall hypertrophy, minimal to mild mixed cell inflammation and increased macrophages in the lung, which generally recovered after a 4-week drug withdrawal period. In the 4-week repeat dose toxicity study in dogs, no detectable toxicity was observed. The doses of no-observed-adverse-effect-level (NOAEL) in rats and dogs were 10 mg/kg and 20 mg/kg, respectively. In conclusion, both in vitro and in vivo pharmacological and toxicological studies showed that LPM6690061 was a safe and efficacious 5-HT2A receptor antagonist/inverse agonist which supports the clinical development as a novel antipsychotic drug.


Assuntos
Antipsicóticos , Serotonina , Ratos , Humanos , Animais , Cães , Agonismo Inverso de Drogas , Receptor 5-HT2A de Serotonina , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico
16.
Hum Gene Ther ; 34(3-4): 139-149, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606685

RESUMO

α1-antitrypsin (AAT) deficiency is a common autosomal recessive hereditary disorder, with a high risk for the development of early-onset panacinar emphysema. AAT, produced primarily in the liver, functions to protect the lung from neutrophil protease; with AAT deficiency, unimpeded neutrophil proteases destroy the lung parenchyma. AAT is susceptible to oxidative damage resulting in an inability to inhibit its target proteases, neutrophil elastase, and cathepsin G. The major sites of oxidative modification on the AAT molecule are methionine residues 351 and 358. We have previously demonstrated that an engineered variant of AAT that resists oxidation by modifying both protein surface methionines (M351V and M358L) provides antiprotease protection, despite oxidative stress. In mice, intravenous delivery of the modified AAT(AVL) variant by AAV serotype 8, AAV8hAAT(AVL), primarily to the liver resulted in long-term expression of an AAT that resists oxidative inactivation. In this study, we evaluated the safety of intravenous administration of AAV8hAAT(AVL) in a dose-escalating, blinded, placebo-controlled toxicology study in wild-type mice. The study assessed organ histology and clinical pathology findings of mice, intravenously administered AAV8hAAT(AVL) at three doses (5.0 × 1011, 5.0 × 1012, and 5.0 × 1013 genome copies [gc]/kg), compared to control mice injected intravenously with phosphate-buffered saline. As previously demonstrated, administration of AAV8hAAT(AVL) resulted in dose-dependent expression of high, potentially therapeutic, levels of serum human AAT protein that persist for at least 6 months. Antibodies against the AAV8 capsid were elicited as expected, but there was no antibody detected against the AAT(AVL) protein generated by the AAV8hAAT(AVL) vector. There was no morbidity or mortality observed in the study. The data demonstrate that intravenous administration of AAV8hAAT(AVL) is safe with no significant adverse effect attributed to AAV8hAAT(AVL) vector at any dose. This study demonstrates that AAV8hAAT(AVL) has a safety profile consistent with the requirements for proceeding to a clinical study.


Assuntos
Enfisema Pulmonar , Deficiência de alfa 1-Antitripsina , Humanos , Camundongos , Animais , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Pulmão/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética , Anticorpos , Administração Intravenosa
17.
Front Pharmacol ; 14: 1125255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895949

RESUMO

LY01005 is an investigational new drug product of goserelin acetate which is formulated as extended-release microspheres for intramuscular injection. To support the proposed clinical trials and marketing application of LY01005, pharmacodynamics, pharmacokinetics and toxicity studies were performed in rats. In the pharmacological study in rats, LY01005 induced an initial supra-physiological level increase of testosterone at 24 h post-dosing which then rapidly fell to castration level. The potency of LY01005 was comparable to the comparator Zoladex® but its effect lasted longer and more stable. A single-dose pharmacokinetics study in rats demonstrated that the Cmax and AUClast of LY01005 increased in a dose-proportional manner in the range of 0.45-1.80 mg/kg and the relative bioavailability was 101.0% between LY01005 and Zoladex®. In the toxicity study, almost all of the positive findings of LY01005 in rats including the changes in hormones (follicle-stimulating hormone, luteinizing hormone, testosterone, progestin) and in reproductive system (uterus, ovary, vagina, cervix uteri, mammary gland, testis, epididymis and prostate) were related to the direct pharmacological effects of goserelin. Mild histopathological changes in foreign body removal reaction induced by excipient were also observed. In conclusion, LY01005 displayed a sustained-release profile of goserelin, and exerted a continuous efficacy in vivo in animal models, which had a comparable potency but with a more sustained effect than that of Zoladex®. The safety profile of LY01005 was largely the same with Zoladex®. These results strongly support the planned LY01005 clinical trials.

18.
Eur J Pharmacol ; 936: 175383, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347321

RESUMO

LY01008 was a biosimilar of Avastin® developed by Shandong Boan Biotechnology. To support the clinical trial and marketing application of LY01008 as a biosimilar, a series of non-clinical pharmacodynamics (PD), pharmacokinetics (PK), and toxicological studies have been conducted. The PD study results showed that LY01008 had similar pharmacodynamic effects with Avastin in VEGF (vascular endothelial growth factor) binding activity, inhibitory effect on angiogenesis and vascular permeability, and anti-tumor activities in nude mouse models alone or combined with chemotherapeutic agents. PK study showed that LY01008 had similar PK parameters with Avastin at the same doses, and the relative bioavailability of LY01008 was 111.4%. The maximum tolerated dose of LY01008 in the single-dose toxicity study of cynomolgus monkeys was greater than 258 mg/kg. LY01008 had no effects on central nervous system, cardiovascular system and respiratory system in cynomolgus monkeys. LY01008 had no hemolytic effect in vitro and no local irritation in cynomolgus monkeys. The immunogenicity of LY01008 was no higher than that of Avastin in cynomolgus monkeys. In the one-month multiple-dose toxicity study in cynomolgus monkeys, the toxicokinetics profiles of LY01008 was similar with Avastin, the characteristics of the toxic reactions were the same and the extent was similar between LY01008 and Avastin, and no new toxic reactions were observed on LY01008. In conclusion, LY01008 had a good safety profile, and was biosimilar with Avastin in the comparative studies of pharmacodynamics, pharmacokinetics, toxicokinetics and toxicology, which supported the clinical trial and marketing application of LY01008 as a biosimilar of Avastin.


Assuntos
Medicamentos Biossimilares , Animais , Camundongos , Bevacizumab/toxicidade , Medicamentos Biossimilares/toxicidade , Macaca fascicularis , Fator A de Crescimento do Endotélio Vascular , Disponibilidade Biológica , Camundongos Nus
19.
Front Biosci (Landmark Ed) ; 27(8): 234, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-36042175

RESUMO

BACKGROUND: Trastuzumab-emtansine (T-DM1, commercial name: Kadcyla) is well-known antibody-drug conjugate (ADC) and was first approved for human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. This molecular format consisting of trastuzumab and maytansinoid payload (emtansine) is very simple, however, T-DM1 has wide heterogeneity due to non-specific conjugation, lowering its therapeutic index (TI). METHODS: To overcome this issue during the chemical modification of the random conjugation approach to generate T-DM1, we developed a novel chemical conjugation technology termed "AJICAP®" for modification of antibodies in site-specific manner by IgG Fc-affinity peptide based reagents. RESULTS: In this study, we compared site-specific maytansinoid-based ADCs synthesized by AJICAP and T-DM1 in rat safety studies. The results indicated an increase in the maximum tolerated dose, demonstrating an expansion of the AJICAP-ADC therapeutic index compared with that of commercially available T-DM1. Gram scale preparation of this AJICAP-ADC and the initial stability study are also described. CONCLUSIONS: Trastuzumab-AJICAP-maytansinoid produced by this unique chemical conjugation methodology showed higher stability and tolerability than commercially available T-DM1.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Maitansina , Ado-Trastuzumab Emtansina , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Maitansina/química , Maitansina/farmacologia , Maitansina/uso terapêutico , Ratos , Receptor ErbB-2/metabolismo , Trastuzumab/química , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
20.
Birth Defects Res ; 113(5): 409-426, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33314670

RESUMO

OBJECTIVES: Strategies for conducting juvenile dose ranging studies before definitive toxicity juvenile animal studies (JAS) have evolved, but the aim of demonstrating study design robustness and efficient animal use remains the same. The objective of dose selection is to identify a strategy to achieve consistent systemic exposure for the duration of the JAS while maintaining exposure separation between dose groups. For preweaning rodents this can prove challenging, as these studies typically treat animals over a broad period of considerable organ development. MATERIALS AND METHODS: In our experience, over 45 rodent juvenile studies (dose range, definitive or investigative) were conducted over 20 years to support pediatric medicine development. In most cases (86%, 12/14), preweaning rodents required decreased doses of test articles than adult rodents; the majority (83%, 10/12) were due to increased systemic exposures in immature animals at the same doses. Thus, extrapolating tolerability and exposure data from adults is not ideal and should not take the place of well-designed juvenile dose range studies. RESULTS/DISCUSSION/CONCLUSION: We propose a phased dose-range-finding approach by first conducting a tolerability phase with a few animals at a starting age corresponding to the youngest clinical starting age, spanning a wide range of doses, then a dose range phase with larger group sizes and fewer doses; both phases incorporate toxicokinetics. Often, exposure was higher in preweaning animals and decreased as animals matured postweaning (postnatal day, PND 21 and older), supporting an age-based dose adjustment strategy. Case studies demonstrate dose adjustment approaches incorporating dose increases or decreases or changes in dose frequency.


Assuntos
Roedores , Animais , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa