Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Circ Res ; 133(1): 48-67, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37254794

RESUMO

BACKGROUND: Left ventricular noncompaction (LVNC) is a prevalent cardiomyopathy associated with excessive trabeculation and thin compact myocardium. Patients with LVNC are vulnerable to cardiac dysfunction and at high risk of sudden death. Although sporadic and inherited mutations in cardiac genes are implicated in LVNC, understanding of the mechanisms responsible for human LVNC is limited. METHODS: We screened the complete exome sequence database of the Pediatrics Cardiac Genomics Consortium and identified a cohort with a de novo CHD4 (chromodomain helicase DNA-binding protein 4) proband, CHD4M202I, with congenital heart defects. We engineered a humanized mouse model of CHD4M202I (mouse CHD4M195I). Histological analysis, immunohistochemistry, flow cytometry, transmission electron microscopy, and echocardiography were used to analyze cardiac anatomy and function. Ex vivo culture, immunopurification coupled with mass spectrometry, transcriptional profiling, and chromatin immunoprecipitation were performed to deduce the mechanism of CHD4M195I-mediated ventricular wall defects. RESULTS: CHD4M195I/M195I mice developed biventricular hypertrabeculation and noncompaction and died at birth. Proliferation of cardiomyocytes was significantly increased in CHD4M195I hearts, and the excessive trabeculation was associated with accumulation of ECM (extracellular matrix) proteins and a reduction of ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif 1), an ECM protease. We rescued the hyperproliferation and hypertrabeculation defects in CHD4M195I hearts by administration of ADAMTS1. Mechanistically, the CHD4M195I protein showed augmented affinity to endocardial BRG1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4). This enhanced affinity resulted in the failure of derepression of Adamts1 transcription such that ADAMTS1-mediated trabeculation termination was impaired. CONCLUSIONS: Our study reveals how a single mutation in the chromatin remodeler CHD4, in mice or humans, modulates ventricular chamber maturation and that cardiac defects associated with the missense mutation CHD4M195I can be attenuated by the administration of ADAMTS1.


Assuntos
Miocárdio Ventricular não Compactado Isolado , Mutação de Sentido Incorreto , Humanos , Animais , Criança , Camundongos , Ventrículos do Coração , Causalidade , Mutação , Miócitos Cardíacos , Cromatina , Miocárdio Ventricular não Compactado Isolado/genética , Proteína ADAMTS1/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética
2.
Cell Mol Life Sci ; 81(1): 158, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556571

RESUMO

Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line. We discovered that csrp3 is specifically expressed in larval ventricular cardiomyocytes (CMs) and that csrp3 deficiency leads to excessive trabeculation, a common feature of CSRP3-related HCM and DCM. We further revealed that csrp3 expression increased in response to different cardiac injuries and was regulated by several signaling pathways vital for heart regeneration. Csrp3 deficiency impeded zebrafish heart regeneration by impairing CM dedifferentiation, hindering sarcomere reassembly, and reducing CM proliferation while aggravating apoptosis. Csrp3 overexpression promoted CM proliferation after injury and ameliorated the impairment of ventricle regeneration caused by pharmacological inhibition of multiple signaling pathways. Our study highlights the critical role of Csrp3 in both zebrafish heart development and regeneration, and provides a valuable animal model for further functional exploration that will shed light on the molecular pathogenesis of CSRP3-related human cardiac diseases.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas com Domínio LIM , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cisteína/genética , Cisteína/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Miócitos Cardíacos/metabolismo
3.
J Physiol ; 602(4): 597-617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345870

RESUMO

Cardiac trabeculae are uneven ventricular muscular structures that develop during early embryonic heart development at the outer curvature of the ventricle. Their biomechanical function is not completely understood, and while their formation is known to be mechanosensitive, it is unclear whether ventricular tissue internal stresses play an important role in their formation. Here, we performed imaging and image-based cardiac biomechanics simulations on zebrafish embryonic ventricles to investigate these issues. Microscopy-based ventricular strain measurements show that the appearance of trabeculae coincided with enhanced deformability of the ventricular wall. Image-based biomechanical simulations reveal that the presence of trabeculae reduces ventricular tissue internal stresses, likely acting as structural support in response to the geometry of the ventricle. Passive ventricular pressure-loading experiments further reveal that the formation of trabeculae is associated with a spatial homogenization of ventricular tissue stiffnesses in healthy hearts, but gata1 morphants with a disrupted trabeculation process retain a spatial stiffness heterogeneity. Our findings thus suggest that modulating ventricular wall deformability, stresses, and stiffness are among the biomechanical functions of trabeculae. Further, experiments with gata1 morphants reveal that a reduction in fluid pressures and consequently ventricular tissue internal stresses can disrupt trabeculation, but a subsequent restoration of ventricular tissue internal stresses via vasopressin rescues trabeculation, demonstrating that tissue stresses are important to trabeculae formation. Overall, we find that tissue biomechanics is important to the formation and function of embryonic heart trabeculation. KEY POINTS: Trabeculations are fascinating and important cardiac structures and their abnormalities are linked to embryonic demise. However, their function in the heart and their mechanobiological formation processes are not completely understood. Our imaging and modelling show that tissue biomechanics is the key here. We find that trabeculations enhance cardiac wall deformability, reduce fluid pressure stresses, homogenize wall stiffness, and have alignments that are optimal for providing load-bearing structural support for the heart. We further discover that high ventricular tissue internal stresses consequent to high fluid pressures are needed for trabeculation formation through a rescue experiment, demonstrating that myocardial tissue stresses are as important as fluid flow wall shear stresses for trabeculation formation.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Fenômenos Biomecânicos , Transdução de Sinais/fisiologia , Miocárdio , Coração , Ventrículos do Coração
4.
J Anat ; 244(6): 1040-1053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284175

RESUMO

That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.


Assuntos
Ventrículos do Coração , Animais , Humanos , Camundongos , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/embriologia , Idade Gestacional
5.
Adv Exp Med Biol ; 1441: 253-268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884716

RESUMO

Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.


Assuntos
Coração , Análise de Célula Única , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Coração/embriologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Organogênese/genética , Regeneração/genética , Análise de Célula Única/métodos , Transcriptoma/genética
6.
Semin Cell Dev Biol ; 118: 144-149, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33994094

RESUMO

Heart malformation is the leading cause of human birth defects, and many of the congenital heart diseases (CHDs) originate from genetic defects that impact cardiac development and maturation. During development, the vertebrate heart undergoes a series of complex morphogenetic processes that increase its ability to pump blood. One of these processes leads to the formation of the sheet-like muscular projections called trabeculae. Trabeculae increase cardiac output and permit nutrition and oxygen uptake in the embryonic myocardium prior to coronary vascularization without increasing heart size. Cardiac trabeculation is also crucial for the development of the intraventricular fast conduction system. Alterations in cardiac trabecular development can manifest as a variety of congenital defects such as left ventricular noncompaction. In this review, we discuss the latest advances in understanding the molecular and cellular mechanisms underlying cardiac trabecular development.


Assuntos
Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Humanos , Miócitos Cardíacos/citologia
7.
J Biol Chem ; 298(1): 101449, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838591

RESUMO

The G-quadruplex (G4) resolvase RNA helicase associated with AU-rich element (RHAU) possesses the ability to unwind G4 structures in both DNA and RNA molecules. Previously, we revealed that RHAU plays a critical role in embryonic heart development and postnatal heart function through modulating mRNA translation and stability. However, whether RHAU functions to resolve DNA G4 in the regulation of cardiac physiology is still elusive. Here, we identified a phenotype of noncompaction cardiomyopathy in cardiomyocyte-specific Rhau deletion mice, including such symptoms as spongiform cardiomyopathy, heart dilation, and death at young ages. We also observed reduced cardiomyocyte proliferation and advanced sarcomere maturation in Rhau mutant mice. Further studies demonstrated that RHAU regulates the expression levels of several genes associated with ventricular trabeculation and compaction, including the Nkx2-5 and Hey2 that encode cardiac transcription factors of NKX2-5 and Hey2, and the myosin heavy chain 7 (Myh7) whose protein product is MYH7. While RHAU modulates Nkx2-5 mRNA and Hey2 mRNA at the post-transcriptional level, we uncovered that RHAU facilitates the transcription of Myh7 through unwinding of the G4 structures in its promoter. These findings demonstrated that RHAU regulates ventricular chamber development through both transcriptional and post-transcriptional mechanisms. These results contribute to a knowledge base that will help to understand the pathogenesis of diseases such as noncompaction cardiomyopathy.


Assuntos
RNA Helicases DEAD-box , Quadruplex G , Miócitos Cardíacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Ventrículos do Coração , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622921

RESUMO

Cardiac looping and trabeculation are key processes during cardiac chamber maturation. However, the underlying mechanisms remain incompletely understood. Here, we report the isolation, cloning and characterization of the proprotein convertase furina from the cardiovascular mutant loft in zebrafish. loft is an ethylnitrosourea-induced mutant and has evident defects in the cardiac outflow tract, heart looping and trabeculation, the craniofacial region and pharyngeal arch arteries. Positional cloning revealed that furina mRNA was barely detectable in loft mutants, and loft failed to complement the TALEN-induced furina mutant pku338, confirming that furina is responsible for the loft mutant phenotypes. Mechanistic studies demonstrated that Notch reporter Tg(tp1:mCherry) signals were largely eliminated in mutant hearts, and overexpression of the Notch intracellular domain partially rescued the mutant phenotypes, probably due to the lack of Furina-mediated cleavage processing of Notch1b proteins, the only Notch receptor expressed in the heart. Together, our data suggest a potential post-translational modification of Notch1b proteins via the proprotein convertase Furina in the heart, and unveil the function of the Furina-Notch1b axis in cardiac looping and trabeculation in zebrafish, and possibly in other organisms.


Assuntos
Pró-Proteína Convertases , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Coração , Organogênese/genética , Receptores Notch/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Morphologie ; 107(356): 147-150, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35787342

RESUMO

Knowledge of anatomical variations of the heart are important to cardiac surgeons, cardiologists, and radiologist. During routine dissection of a 77-year-old male cadaver, we observed an unusual origin of a papillary muscle of the right ventricle arising from the atrioventricular aspect of the moderator band. This papillary muscle was 6.7mm long and 2.6mm wide. It gave rise to two chordae tendineae: one to the inferior (posterior) papillary muscle of the right ventricle and one directly to the inferior (posterior) leaflet of the tricuspid valve. Variants of the internal anatomy of the heart as exemplified in the present case report should be born in mind during image interpretation and invasive procedures of the right ventricle of the heart.


Assuntos
Ventrículos do Coração , Músculos Papilares , Masculino , Humanos , Idoso , Músculos Papilares/diagnóstico por imagem , Músculos Papilares/anatomia & histologia , Músculos Papilares/fisiologia , Ventrículos do Coração/diagnóstico por imagem , Cordas Tendinosas/fisiologia , Cordas Tendinosas/cirurgia , Valva Tricúspide/fisiologia , Valva Tricúspide/cirurgia , Cadáver
10.
Development ; 146(9)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30992276

RESUMO

Tissue morphogenesis requires changes in cell-cell adhesion as well as in cell shape and polarity. Cardiac trabeculation is a morphogenetic process essential for forming a functional ventricular wall. Here, we show that zebrafish hearts lacking Crb2a, a component of the Crumbs polarity complex, display compact wall integrity defects and fail to form trabeculae. Crb2a localization is very dynamic at a time when other cardiomyocyte junctional proteins also relocalize. Before the initiation of cardiomyocyte delamination to form the trabecular layer, Crb2a is expressed in all ventricular cardiomyocytes and colocalizes with the junctional protein ZO-1. Subsequently, Crb2a becomes localized all along the apical membrane of compact layer cardiomyocytes and is downregulated in the delaminating cardiomyocytes. We show that blood flow and Nrg/ErbB2 signaling regulate Crb2a localization dynamics. crb2a-/- display a multilayered wall with polarized cardiomyocytes: a unique phenotype. Our data further indicate that Crb2a regulates cardiac trabeculation by controlling the localization of tight and adherens junction proteins in cardiomyocytes. Importantly, transplantation data show that Crb2a controls CM behavior in a cell-autonomous manner in the sense that crb2a-/- cardiomyocytes transplanted into wild-type animals were always found in the trabecular layer. In summary, our study reveals a crucial role for Crb2a during cardiac development.


Assuntos
Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas de Membrana/genética , Miócitos Cardíacos/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteína da Zônula de Oclusão-1/genética
11.
J Anat ; 241(1): 173-190, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35128670

RESUMO

Shrews occupy the lower extreme of the seven orders of magnitude mammals range in size. Their hearts are large relative to body weight and heart rate can exceed a thousand beats a minute. It is not known whether traits typical of mammal hearts scale to these extremes. We assessed the heart of three species of shrew (genus Sorex) following the sequential segmental analysis developed for human hearts. Using micro-computed tomography, we describe the overall structure and find, in agreement with previous studies, a large and elongate ventricle. The atrial and ventricular septums and the atrioventricular (AV) and arterial valves are typically mammalian. The ventricular walls comprise mostly compact myocardium and especially the right ventricle has few trabeculations on the luminal side. A developmental process of compaction is thought to reduce trabeculations in mammals, but in embryonic shrews the volume of trabeculations increase for every gestational stage, only slower than the compact volume. By expression of Hcn4, we identify a sinus node and an AV conduction axis which is continuous with the ventricular septal crest. Outstanding traits include pulmonary venous sleeve myocardium that reaches farther into the lungs than in any other mammals. Typical proportions of coronary arteries-to-aorta do not scale and the shrew coronary arteries are proportionally enormous, presumably to avoid the high resistance to blood flow of narrow vessels. In conclusion, most cardiac traits do scale to the miniscule shrews. The shrew heart, nevertheless, stands out by its relative size, elongation, proportionally large coronary vessels, and extent of pulmonary venous myocardium.


Assuntos
Ventrículos do Coração , Coração , Animais , Vasos Coronários/anatomia & histologia , Coração/anatomia & histologia , Átrios do Coração , Frequência Cardíaca , Humanos , Musaranhos , Microtomografia por Raio-X
12.
J Mol Cell Cardiol ; 156: 45-56, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773996

RESUMO

CRELD1 (Cysteine-Rich with EGF-Like Domains 1) is a risk gene for non-syndromic atrioventricular septal defects in human patients. In a mouse model, Creld1 has been shown to be essential for heart development, particularly in septum and valve formation. However, due to the embryonic lethality of global Creld1 knockout (KO) mice, its cell type-specific function during peri- and postnatal stages remains unknown. Here, we generated conditional Creld1 KO mice lacking Creld1 either in the endocardium (KOTie2) or the myocardium (KOMyHC). Using a combination of cardiac phenotyping, histology, immunohistochemistry, RNA-sequencing, and flow cytometry, we demonstrate that Creld1 function in the endocardium is dispensable for heart development. Lack of myocardial Creld1 causes extracellular matrix remodeling and trabeculation defects by modulation of the Notch1 signaling pathway. Hence, KOMyHC mice die early postnatally due to myocardial hypoplasia. Our results reveal that Creld1 not only controls the formation of septa and valves at an early stage during heart development, but also cardiac maturation and function at a later stage. These findings underline the central role of Creld1 in mammalian heart development and function.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/fisiologia , Miocárdio/metabolismo , Organogênese/genética , Animais , Biomarcadores , Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Camundongos Knockout , Análise de Célula Única
13.
Development ; 145(14)2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061167

RESUMO

Cardiomyocyte proliferation is crucial for cardiac growth, patterning and regeneration; however, few studies have investigated the behavior of dividing cardiomyocytes in vivo Here, we use time-lapse imaging of beating hearts in combination with the FUCCI system to monitor the behavior of proliferating cardiomyocytes in developing zebrafish. Confirming in vitro observations, sarcomere disassembly, as well as changes in cell shape and volume, precede cardiomyocyte cytokinesis. Notably, cardiomyocytes in zebrafish embryos and young larvae mostly divide parallel to the myocardial wall in both the compact and trabecular layers, and cardiomyocyte proliferation is more frequent in the trabecular layer. While analyzing known regulators of cardiomyocyte proliferation, we observed that the Nrg/ErbB2 and TGFß signaling pathways differentially affect compact and trabecular layer cardiomyocytes, indicating that distinct mechanisms drive proliferation in these two layers. In summary, our data indicate that, in zebrafish, cardiomyocyte proliferation is essential for trabecular growth, but not initiation, and set the stage to further investigate the cellular and molecular mechanisms driving cardiomyocyte proliferation in vivo.


Assuntos
Miócitos Cardíacos/citologia , Organogênese , Peixe-Zebra/crescimento & desenvolvimento , Animais , Divisão Celular , Proliferação de Células , Forma Celular , Tamanho Celular , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Ligantes , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Development ; 145(10)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773645

RESUMO

Cardiac trabeculation is a highly regulated process that starts with the delamination of compact layer cardiomyocytes. The Hippo signaling pathway has been implicated in cardiac development but many questions remain. We have investigated the role of Wwtr1, a nuclear effector of the Hippo pathway, in zebrafish and find that its loss leads to reduced cardiac trabeculation. However, in mosaic animals, wwtr1-/- cardiomyocytes contribute more frequently than wwtr1+/- cardiomyocytes to the trabecular layer of wild-type hearts. To investigate this paradox, we examined the myocardial wall at early stages and found that compact layer cardiomyocytes in wwtr1-/- hearts exhibit disorganized cortical actin structure and abnormal cell-cell junctions. Accordingly, wild-type cardiomyocytes in mosaic mutant hearts contribute less frequently to the trabecular layer than when present in mosaic wild-type hearts, indicating that wwtr1-/- hearts are not able to support trabeculation. We also found that Nrg/Erbb2 signaling, which is required for trabeculation, could promote Wwtr1 nuclear export in cardiomyocytes. Altogether, these data suggest that Wwtr1 establishes the compact wall architecture necessary for trabeculation, and that Nrg/Erbb2 signaling negatively regulates its nuclear localization and therefore its activity.


Assuntos
Coração/embriologia , Coração/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos Cardíacos/citologia , Organogênese/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células/fisiologia , Junções Intercelulares/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Morfolinos/genética , Cadeias Pesadas de Miosina/genética , Neurregulinas/metabolismo , Organogênese/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor ErbB-2/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Troponina T/genética , Proteínas de Sinalização YAP , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
15.
Curr Top Membr ; 87: 131-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696883

RESUMO

Living cells are exposed to multiple mechanical stimuli from the extracellular matrix or from surrounding cells. Mechanoreceptors are molecules that display status changes in response to mechanical stimulation, transforming physical cues into biological responses to help the cells adapt to dynamic changes of the microenvironment. Mechanical stimuli are responsible for shaping the tridimensional development and patterning of the organs in early embryonic stages. The development of the heart is one of the first morphogenetic events that occur in embryos. As the circulation is established, the vascular system is exposed to constant shear stress, which is the force created by the movement of blood. Both spatial and temporal variations in shear stress differentially modulate critical steps in heart development, such as trabeculation and compaction of the ventricular wall and the formation of the heart valves. Zebrafish embryos are small, transparent, have a short developmental period and allow for real-time visualization of a variety of fluorescently labeled proteins to recapitulate developmental dynamics. In this review, we will highlight the application of zebrafish models as a genetically tractable model for investigating cardiovascular development and regeneration. We will introduce our approaches to manipulate mechanical forces during critical stages of zebrafish heart development and in a model of vascular regeneration, as well as advances in imaging technologies to capture these processes at high resolution. Finally, we will discuss the role of molecules of the Plexin family and Piezo cation channels as major mechanosensors recently implicated in cardiac morphogenesis.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Animais , Modelos Animais , Morfogênese , Estresse Mecânico
16.
Dev Biol ; 446(2): 142-150, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30611731

RESUMO

Ventricular trabeculation is one essential step for generating a functionally competent ventricular wall, while how the early trabeculae carneae forms and subsequently develops into mature chambers is poorly understood. We found that in zebrafish zfpm1-/- juvenile, cardiac function is significantly compromised, with hearts exhibiting deformed trabecular meshwork. To elucidate the mechanisms of Zfpm1 function in cardiac trabeculation, we analyzed zfpm1 mutant hearts more closely and found that loss of Zfpm1 activity resulted in over-activation of Neuregulin-ErbB signalling and abnormally elevated cardiomyocyte proliferation during cardiac trabeculae growth and modeling stages. These results implicate Zfpm1 plays a pivotal role in coordinating trabeculae patterning and growth.


Assuntos
Miocárdio/metabolismo , Neurregulinas/genética , Receptor ErbB-2/genética , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proliferação de Células/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Coração/embriologia , Microscopia Confocal , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurregulinas/metabolismo , Receptor ErbB-2/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Dev Biol ; 442(1): 127-137, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012423

RESUMO

Development of the embryonic heart involves an intricate network of biochemical and genetic cues to ensure its proper growth and morphogenesis. However, studies from avian and teleost models reveal that biomechanical force, namely hemodynamic loading (blood pressure and shear stress), plays a significant role in regulating heart development. To study how hemodynamic loading impacts development of the mammalian embryonic heart, we utilized mouse embryo culture and manipulation techniques and performed optical projection tomography imaging followed by morphometric analysis to determine how reduced-loading affects heart volume, myocardial thickness, trabeculation and looping. Our results reveal that hemodynamic loading can regulate these features at different thresholds. Intermediate levels of hemodynamic loading are sufficient to promote proper myocardial growth and heart size, but insufficient to promote looping and trabeculation. Whereas, low levels of hemodynamic loading fails to promote proper growth of the myocardium and heart size. These results reveal that the regulation of heart development by biomechanical force is conserved across many vertebrate classes, and this study begins to elucidate how these specific forces regulate development of the mammalian heart.


Assuntos
Coração/embriologia , Hemodinâmica/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Camundongos/embriologia , Morfogênese/fisiologia , Miocárdio/patologia , Organogênese , Estresse Mecânico
18.
J Card Fail ; 25(12): 1004-1008, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31626950

RESUMO

BACKGROUND: Wolff-Parkinson-White (WPW) has been associated with left ventricular noncompaction (LVNC) in children. Little is known about the prevalence of this association, clinical outcomes, and treatment options. METHODS: Retrospective review of subjects with LVNC. LVNC was defined by established criteria; those with congenital heart disease were excluded. Electrocardiograms (ECGs) were reviewed for presence of pre-excitation. Outcomes were compared between those with isolated LVNC and those with WPW and LVNC. RESULTS: A total of 348 patients with LVNC were identified. Thirty-eight (11%) were found to have WPW pattern on ECG, and 84% of those with WPW and LVNC had cardiac dysfunction. In Kaplan-Meier analysis, there was significantly lower freedom from significant dysfunction (ejection fraction ≤ 40%) among those with WPW and LVNC (P < .001). Further analysis showed a higher risk of developing significant dysfunction in patients with WPW and LVNC versus LVNC alone (hazard ratio 4.64 [2.79, 9.90]). Twelve patients underwent an ablation procedure with an acute success rate of 83%. Four patients with cardiac dysfunction were successfully ablated, 3 having improvement in function. CONCLUSION: WPW is common among children with LVNC and is associated with cardiac dysfunction. Ablation therapy can be safely and effectively performed and may result in improvement in function.


Assuntos
Miocárdio Ventricular não Compactado Isolado/diagnóstico , Miocárdio Ventricular não Compactado Isolado/epidemiologia , Síndrome de Wolff-Parkinson-White/diagnóstico , Síndrome de Wolff-Parkinson-White/epidemiologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Eletrocardiografia/métodos , Feminino , Seguimentos , Humanos , Lactente , Miocárdio Ventricular não Compactado Isolado/fisiopatologia , Masculino , Estudos Retrospectivos , Síndrome de Wolff-Parkinson-White/fisiopatologia
19.
J Exp Biol ; 222(Pt 18)2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31439654

RESUMO

The ejection fraction of the trabeculated cardiac ventricle of reptiles has not previously been measured. Here, we used the gold standard clinical methodology - electrocardiogram-gated flow magnetic resonance imaging (MRI) - to validate stroke volume measurements and end diastolic ventricular blood volume. This produced an estimate of ejection fraction in our study species, the red footed tortoise Chelonoidis carbonarius (n=5), under isoflurane anaesthesia of 88±11%. After reduction of the prevailing right-to-left intraventricular shunt through the action of atropine, the ejection fraction was 96±6%. This methodology opens new avenues for studying the complex hearts of ectotherms, and validating hypotheses on the function of a more highly trabeculated heart than that of endotherms, which have lower ejection fractions.


Assuntos
Volume Sistólico/fisiologia , Tartarugas/fisiologia , Anestésicos Inalatórios/administração & dosagem , Animais , Atropina/administração & dosagem , Eletrocardiografia/métodos , Eletrocardiografia/veterinária , Feminino , Ventrículos do Coração , Isoflurano/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária
20.
Echocardiography ; 36(4): 813-814, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30803005

RESUMO

A 22-day-old boy born to a 21-year-old gravida 1, para 1 mother was admitted to our hospital for routine newborn examination. On physical examination, any clinical abnormality or malformations were not observed except 1/6 systolic murmur. A well-demarcated membranous structure was confirmed by echocardiography which was starting from left ventricular apex, extending to the mitral chords including papillary muscles in apical four-chamber and parasternal long-axis examination. This structure was considered as a variant of left ventricular noncompaction. The patient is still being followed up in our pediatric cardiology department.


Assuntos
Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Miocárdio Ventricular não Compactado Isolado/diagnóstico por imagem , Humanos , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa