RESUMO
Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.
Assuntos
Linfócitos T CD8-Positivos , Glicoproteínas de Membrana , Taurina , Taurina/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático , Fator 4 Ativador da Transcrição/metabolismo , Transdução de Sinais , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Eukaryotic transcription factors (TFs) from the same structural family tend to bind similar DNA sequences, despite the ability of these TFs to execute distinct functions in vivo. The cell partly resolves this specificity paradox through combinatorial strategies and the use of low-affinity binding sites, which are better able to distinguish between similar TFs. However, because these sites have low affinity, it is challenging to understand how TFs recognize them in vivo. Here, we summarize recent findings and technological advancements that allow for the quantification and mechanistic interpretation of TF recognition across a wide range of affinities. We propose a model that integrates insights from the fields of genetics and cell biology to provide further conceptual understanding of TF binding specificity. We argue that in eukaryotes, target specificity is driven by an inhomogeneous 3D nuclear distribution of TFs and by variation in DNA binding affinity such that locally elevated TF concentration allows low-affinity binding sites to be functional.
Assuntos
Eucariotos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Regulação da Expressão Gênica , HumanosRESUMO
YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation.
Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Camundongos , Fatores de Transcrição , Transcrição Gênica , Proteínas de Sinalização YAPRESUMO
During implantation, embryos undergo an unpolarized-to-polarized transition to initiate postimplantation morphogenesis. However, the underlying molecular mechanism is unknown. Here, we identify a transient transcriptional activation governing embryonic morphogenesis and pluripotency transition during implantation. In naive pluripotent embryonic stem cells (ESCs), which represent preimplantation embryos, we find that the microprocessor component DGCR8 can recognize stem-loop structures within nascent mRNAs to sequester transcriptional coactivator FLII to suppress transcription directly. When mESCs exit from naive pluripotency, the ERK/RSK/P70S6K pathway rapidly activates, leading to FLII phosphorylation and disruption of DGCR8/FLII interaction. Phosphorylated FLII can bind to transcription factor JUN, activating cell migration-related genes to establish poised pluripotency akin to implanting embryos. Resequestration of FLII by DGCR8 drives poised ESCs into formative pluripotency. In summary, we identify a DGCR8/FLII/JUN-mediated transient transcriptional activation mechanism. Disruption of this mechanism inhibits naive-poised-formative pluripotency transition and the corresponding unpolarized-to-polarized transition during embryo implantation, which are conserved in mice and humans.
Assuntos
Implantação do Embrião , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Ativação Transcricional , Animais , Implantação do Embrião/genética , Camundongos , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Fosforilação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Feminino , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Transdução de SinaisRESUMO
The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.
Assuntos
Microscopia Crioeletrônica , Quinase 8 Dependente de Ciclina , Complexo Mediador , Ligação Proteica , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Complexo Mediador/química , Humanos , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 8 Dependente de Ciclina/genética , Animais , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Sítios de Ligação , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Células HEK293 , Domínios e Motivos de Interação entre ProteínasRESUMO
Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.
Assuntos
Cromatina , Complexo Repressor Polycomb 1 , Animais , Camundongos , Cromatina/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Nucleossomos/genética , Ubiquitinação , Expressão Gênica , Mamíferos/metabolismoRESUMO
As part of the efforts to understand nuclear IκB function in NF-κB-dependent gene expression, we report an X-ray crystal structure of the IκBζ ankyrin repeat domain in complex with the dimerization domain of the NF-κB p50 homodimer. IκBζ possesses an N-terminal α helix that conveys domain folding stability. Affinity and specificity of the complex depend on a small portion of p50 at the nuclear localization signal. The model suggests that only one p50 subunit supports binding with IκBζ, and biochemical experiments confirm that IκBζ associates with DNA-bound NF-κB p50:RelA heterodimers. Comparisons of IκBζ:p50 and p50:κB DNA complex crystallographic models indicate that structural rearrangement is necessary for ternary complex formation of IκBζ and p50 with DNA.
Assuntos
Modelos Moleculares , Subunidade p50 de NF-kappa B , Ligação Proteica , Multimerização Proteica , Humanos , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Cristalografia por Raios X , DNA/metabolismo , DNA/química , Proteínas I-kappa B/metabolismo , Proteínas I-kappa B/química , Proteínas I-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/química , Subunidade p50 de NF-kappa B/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/química , Fator de Transcrição RelA/genéticaRESUMO
The expansion of introns within mammalian genomes poses a challenge for the production of full-length messenger RNAs (mRNAs), with increasing evidence that these long AT-rich sequences present obstacles to transcription. Here, we investigate RNA polymerase II (RNAPII) elongation at high resolution in mammalian cells and demonstrate that RNAPII transcribes faster across introns. Moreover, we find that this acceleration requires the association of U1 snRNP (U1) with the elongation complex at 5' splice sites. The role of U1 to stimulate elongation rate through introns reduces the frequency of both premature termination and transcriptional arrest, thereby dramatically increasing RNA production. We further show that changes in RNAPII elongation rate due to AT content and U1 binding explain previous reports of pausing or termination at splice junctions and the edge of CpG islands. We propose that U1-mediated acceleration of elongation has evolved to mitigate the risks that long AT-rich introns pose to transcript completion.
Assuntos
RNA Polimerase II , Ribonucleoproteína Nuclear Pequena U1 , Animais , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transcrição Gênica , Spliceossomos/genética , Íntrons/genética , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Splicing de RNA , Precursores de RNA/genética , Mamíferos/metabolismoRESUMO
7SK non-coding RNA (7SK) negatively regulates RNA polymerase II (RNA Pol II) elongation by inhibiting positive transcription elongation factor b (P-TEFb), and its ribonucleoprotein complex (RNP) is hijacked by HIV-1 for viral transcription and replication. Methylphosphate capping enzyme (MePCE) and La-related protein 7 (Larp7) constitutively associate with 7SK to form a core RNP, while P-TEFb and other proteins dynamically assemble to form different complexes. Here, we present the cryo-EM structures of 7SK core RNP formed with two 7SK conformations, circular and linear, and uncover a common RNA-dependent MePCE-Larp7 complex. Together with NMR, biochemical, and cellular data, these structures reveal the mechanism of MePCE catalytic inactivation in the core RNP, unexpected interactions between Larp7 and RNA that facilitate a role as an RNP chaperone, and that MePCE-7SK-Larp7 core RNP serves as a scaffold for switching between different 7SK conformations essential for RNP assembly and regulation of P-TEFb sequestration and release.
Assuntos
Fator B de Elongação Transcricional Positiva , RNA , Conformação Molecular , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteínas/metabolismo , Transcrição GênicaRESUMO
Transcriptionally silent genes must be activated throughout development. This requires nucleosomes be removed from promoters and enhancers to allow transcription factor (TF) binding and recruitment of coactivators and RNA polymerase II (Pol II). Specialized pioneer TFs bind nucleosome-wrapped DNA to perform this chromatin opening by mechanisms that remain incompletely understood. Here, we show that GAGA factor (GAF), a Drosophila pioneer-like factor, functions with both SWI/SNF and ISWI family chromatin remodelers to allow recruitment of Pol II and entry to a promoter-proximal paused state, and also to promote Pol II's transition to productive elongation. We found that GAF interacts with PBAP (SWI/SNF) to open chromatin and allow Pol II to be recruited. Importantly, this activity is not dependent on NURF as previously proposed; however, GAF also synergizes with NURF downstream from this process to ensure efficient Pol II pause release and transition to productive elongation, apparently through its role in precisely positioning the +1 nucleosome. These results demonstrate how a single sequence-specific pioneer TF can synergize with remodelers to activate sets of genes. Furthermore, this behavior of remodelers is consistent with findings in yeast and mice, and likely represents general, conserved mechanisms found throughout eukarya.
Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina/genética , Ligação Proteica , RNA Polimerase II/metabolismo , Elongação da Transcrição GenéticaRESUMO
Efficient release of promoter-proximally paused RNA Pol II into productive elongation is essential for gene expression. Recently, we reported that the Integrator complex can bind paused RNA Pol II and drive premature transcription termination, potently attenuating the activity of target genes. Premature termination requires RNA cleavage by the endonuclease subunit of Integrator, but the roles of other Integrator subunits in gene regulation have yet to be elucidated. Here we report that Integrator subunit 8 (IntS8) is critical for transcription repression and required for association with protein phosphatase 2A (PP2A). We find that Integrator-bound PP2A dephosphorylates the RNA Pol II C-terminal domain and Spt5, preventing the transition to productive elongation. Thus, blocking PP2A association with Integrator stimulates pause release and gene activity. These results reveal a second catalytic function associated with Integrator-mediated transcription termination and indicate that control of productive elongation involves active competition between transcriptional kinases and phosphatases.
Assuntos
Proteínas de Drosophila/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas de Drosophila/química , Drosophila melanogaster , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Fosforilação , Regiões Promotoras Genéticas , Subunidades Proteicas/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transdução de Sinais , Especificidade por Substrato , Fatores de Transcrição/químicaRESUMO
Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input "easy Hi-C" protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type- and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.
Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma Humano , Neurogênese/genética , Regiões Promotoras Genéticas , Adulto , Linhagem Celular , Cérebro/citologia , Cérebro/crescimento & desenvolvimento , Cérebro/metabolismo , Cromatina/ultraestrutura , Mapeamento Cromossômico , Feto , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/metabolismo , Lobo Temporal/citologia , Lobo Temporal/crescimento & desenvolvimento , Lobo Temporal/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.
Assuntos
DNA Mitocondrial/metabolismo , Desoxiadenosinas/metabolismo , Metiltransferases/metabolismo , Animais , Metilação de DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxiadenosinas/genética , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Hipóxia/genética , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.
Assuntos
RNA Polimerases Dirigidas por DNA/genética , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/ultraestrutura , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/ultraestruturaRESUMO
Liver regeneration and metabolism are highly interconnected. Here, we show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including cyclin D1), and up-regulation of p21 through activation of p53 signaling. In the absence of p53, Gdown1-deficient hepatocytes show a severe dysregulation of cell cycle progression, with incomplete mitoses, and a premalignant-like transformation. Mechanistically, Gdown1 is associated with elongating Pol II on the highly expressed genes and its ablation leads to reduced Pol II recruitment to these genes, suggesting that Pol II redistribution may facilitate hepatocyte re-entry into the cell cycle. These results establish an important physiological function for a Pol II regulatory factor (Gdown1) in the maintenance of normal liver cell transcription through constraints on cell cycle re-entry of quiescent hepatocytes.
Assuntos
Ciclo Celular/genética , Regulação para Baixo/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Animais , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Genes p53/genética , Hepatócitos , Fígado/citologia , Fígado/metabolismo , Transdução de Sinais/genéticaRESUMO
Iron deposition is frequently observed in human autoinflammatory diseases, but its functional significance is largely unknown. Here we showed that iron promoted proinflammatory cytokine expression in T cells, including GM-CSF and IL-2, via regulating the stability of an RNA-binding protein PCBP1. Iron depletion or Pcbp1 deficiency in T cells inhibited GM-CSF production by attenuating Csf2 3' untranslated region (UTR) activity and messenger RNA stability. Pcbp1 deficiency or iron uptake blockade in autoreactive T cells abolished their capacity to induce experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. Mechanistically, intracellular iron protected PCBP1 protein from caspase-mediated proteolysis, and PCBP1 promoted messenger RNA stability of Csf2 and Il2 by recognizing UC-rich elements in the 3' UTRs. Our study suggests that iron accumulation can precipitate autoimmune diseases by promoting proinflammatory cytokine production. RNA-binding protein-mediated iron sensing may represent a simple yet effective means to adjust the inflammatory response to tissue homeostatic alterations.
Assuntos
Proteínas de Transporte/metabolismo , Citocinas/biossíntese , Encefalomielite Autoimune Experimental/metabolismo , Ferro/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Linhagem Celular , Citocinas/genética , Proteínas de Ligação a DNA , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Ferro/agonistas , Deficiências de Ferro , Camundongos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores da Transferrina/deficiência , Linfócitos T Auxiliares-Indutores/transplanteRESUMO
The transition of RNA polymerase II (Pol II) from initiation to productive elongation is a central, regulated step in metazoan gene expression. At many genes, Pol II pauses stably in early elongation, remaining engaged with the 25- to 60-nt-long nascent RNA for many minutes while awaiting signals for release into the gene body. However, 15%-20% of genes display highly unstable promoter Pol II, suggesting that paused polymerase might dissociate from template DNA at these promoters and release a short, non-productive mRNA. Here, we report that paused Pol II can be actively destabilized by the Integrator complex. Specifically, we present evidence that Integrator utilizes its RNA endonuclease activity to cleave nascent RNA and drive termination of paused Pol II. These findings uncover a previously unappreciated mechanism of metazoan gene repression, akin to bacterial transcription attenuation, wherein promoter-proximal Pol II is prevented from entering productive elongation through factor-regulated termination.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Elongação da Transcrição Genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , RNA Polimerase II/genética , RNA Mensageiro/genéticaRESUMO
Bacteriophage λN protein, a model anti-termination factor, binds nascent RNA and host Nus factors, rendering RNA polymerase resistant to all pause and termination signals. A 3.7-Å-resolution cryo-electron microscopy structure and structure-informed functional analyses reveal a multi-pronged strategy by which the intrinsically unstructured λN directly modifies RNA polymerase interactions with the nucleic acids and subverts essential functions of NusA, NusE, and NusG to reprogram the transcriptional apparatus. λN repositions NusA and remodels the ß subunit flap tip, which likely precludes folding of pause or termination RNA hairpins in the exit tunnel and disrupts termination-supporting interactions of the α subunit C-terminal domains. λN invades and traverses the RNA polymerase hybrid cavity, likely stabilizing the hybrid and impeding pause- or termination-related conformational changes of polymerase. λN also lines upstream DNA, seemingly reinforcing anti-backtracking and anti-swiveling by NusG. Moreover, λN-repositioned NusA and NusE sequester the NusG C-terminal domain, counteracting ρ-dependent termination. Other anti-terminators likely utilize similar mechanisms to enable processive transcription.
Assuntos
Bacteriófago lambda/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/biossíntese , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Bacteriófago lambda/genética , Sítios de Ligação , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genéticaRESUMO
Precise spatio-temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Animais , Estabilidade Enzimática , Humanos , Nucleossomos/metabolismo , RNA Polimerase II/genética , Elongação da Transcrição GenéticaRESUMO
To thrive and to fulfill their functions, cells need to maintain proteome homeostasis even in the face of adverse environmental conditions or radical restructuring of the proteome during differentiation. At the center of the regulation of proteome homeostasis is an ancient transcriptional mechanism, the so-called heat shock response (HSR), orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). As Hsf1 is implicated in aging and several pathologies like cancer and neurodegenerative disorders, understanding the regulation of Hsf1 could open novel therapeutic opportunities. In this review, we discuss the regulation of Hsf1's transcriptional activity by multiple layers of control circuits involving Hsf1 synthesis and degradation, conformational rearrangements and post-translational modifications (PTMs), and molecular chaperones in negative feedback loops.