Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Sci Technol ; 58(3): 1648-1658, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175212

RESUMO

The semiconductor industry has claimed that perfluorooctanesulfonate (PFOS), a persistent per- and polyfluoroalkyl substance (PFAS), has been eliminated from semiconductor production; however, information about the use of alternative compounds remains limited. This study aimed to develop a nontarget approach to discovering diverse PFAS substitutions used in semiconductor manufacturing. A distinct fragment-based approach has been established to identify the hydrophobic and hydrophilic features of acidic and neutral fluorosurfactants through fragments and neutral losses, including those outside the homologous series. Ten sewage samples from 5 semiconductor plants were analyzed with target and nontarget analysis. Among the 20 identified PFAS spanning 12 subclasses, 15 were reported in semiconductor sewage for the first time. The dominant identified PFAS compounds were C4 sulfonamido derivatives, including perfluorobutane sulfonamido ethanol (FBSE), perfluorobutane sulfonamide (FBSA), and perfluorobutane sulfonamido diethanol (FBSEE diol), with maximum concentrations of 482 µg/L, 141 µg/L, and 83.5 µg/L in sewage, respectively. Subsequently, three ultrashort chain perfluoroalkyl acids (PFAAs) were identified in all samples, ranging from 0.004 to 19.9 µg/L. Three effluent samples from the associated industrial wastewater treatment plants (WWTPs) were further analyzed. This finding, that the C4 sulfonamido acetic acid series constitutes a significant portion (65%-82%) of effluents from WWTP3 and WWTP4, emphasizes the conversion of fluorinated alcohols to fluorinated acids during aerobic treatment. The identification of the intermediate metabolites of FBSEE diol, further supported by our laboratory batch studies, prompts the proposal of a novel metabolic pathway for FBSEE diol. The total amount of perfluorobutane sulfonamido derivatives reached 1934 µg/L (90%), while that of PFAAs, which have typically received attention, was only 205 µg/L (10%). This suggests that perfluorobutane sulfonamido derivatives are emerging as a new trend in fluorosurfactants used in the semiconductor industry, serving as PFAS precursors and contributing to the release of their metabolites into the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Esgotos/química , Tensoativos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
2.
Environ Sci Technol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096310

RESUMO

Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) are commonly released into the environment as byproducts of combustion processes, accompanied by flue gases. Chlorinated (Cl) and brominated (Br) precursors play crucial roles in forming PXDD/Fs. However, the specific contributions of Cl-precursors and Br-precursors to PXDD/Fs formation have not been fully elucidated. Herein, we demonstrate that the formation of Br-precursors can increase the fraction of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) congeners substituted at specific positions, such as 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. This is attributed to the electrophilic chlorination reaction of the Br-precursors, which includes the Br-to-Cl transformation pathway, following the principle of regioselectivity. The observed formation of polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from 1,2-dibromobenzene (1,2-DiBBz) as a Br precursor provides direct evidence supporting the proposed Br-to-Cl transformation. Quantum chemical calculations are employed to discuss the principle of regioselectivity in the Br-to-Cl transformation, clarifying the priority of the position for electrophilic chlorination. Additionally, the concentration of PCDD/Fs formed from 1,2-DiBBz is 1.6 µg/kg, comparable to that of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) (2.4 µg/kg), highlighting the potential of brominated organic pollutants as precursors for PCDD/Fs formation. This study provides three potential pathways for PCDD/Fs formation from Br-precursors, establishing a theoretical foundation for elucidating the formation mechanism of PXDD/Fs in the coexistence of Cl and Br.

3.
Environ Res ; 216(Pt 3): 114690, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334825

RESUMO

The presence of antibiotics in the environment causes increasing attention due to their potential risks to ecosystems and public health. Laccases are versatile oxidases capable of degrading various organic contaminants including pharmaceuticals. However, the performance of bacterial laccases on tetracycline antibiotics (TCs) degradation is seldom investigated. In this work, a bacterial laccase from Bacillus amyloliquefaciens was immobilized as laccase-inorganic hybrid nanoflowers (Lac-hNFs) by a facile and rapid method. The immobilized laccase was employed to remove different TCs including tigecycline, which is a third-generation TC that its degradation by laccase has not been reported. Lac-hNFs were synthesized by sonication-mediated self-assembly of laccase and copper ions in 5 min at room temperature. About 95% of laccase could be encapsulated in the nanoflowers, and the obtained Lac-hNFs exhibited great enhancement in stability under harsh conditions. The immobilized laccase showed a half-life of 11.7 h at 60 °C, which was about 1.4-fold higher than that of the free enzyme. Meanwhile, Lac-hNFs retained 81% of the initial activity after incubation at 25 °C for 10 days. The laccase in combination with acetosyringone could efficiently decompose tetracycline, doxycycline, and tigecycline. More than 79% of the three TCs were transformed in 1 h. Compared with the free enzyme, Lac-hNFs demonstrated higher capacity in the removal of TCs. Furthermore, Lac-hNFs remained their high degradation capacity after five cycles of reuse. Bacterial growth inhibition test revealed that most of the toxicity of TCs was eliminated after Lac-hNFs treatment. The main transformation products were identified by LC-MS, and the possible degradation pathways were proposed. The interaction mechanism between laccase and TCs was also analyzed using molecular docking. This work provides an efficient way to remove toxic organic pollutants.


Assuntos
Cobre , Lacase , Lacase/metabolismo , Fosfatos , Simulação de Acoplamento Molecular , Tigeciclina , Ecossistema , Antibacterianos
4.
Environ Res ; 220: 115199, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592808

RESUMO

A heterotrophic nitrification-aerobic denitrification (HN-AD) strain isolated from membrane aerated biofilm reactor (MABR) was identified as Pseudomonas sp. B-1, which could effectively utilize multiple nitrogen sources and preferentially consume NH4-N. The maximum degradation efficiencies of NO3-N, NO2-N and NH4-N were 98.04%, 94.84% and 95.74%, respectively. The optimal incubation time, shaking speed, carbon source, pH, temperature and C/N ratio were 60 h, 180 rpm, sodium succinate, 8, 30 °C and 25, respectively. The strain preferred salinity of 1.5% and resisted heavy metals in the order of Mn2+ > Co2+ > Zn2+ > Cu2+. It can be preliminarily speculated from the results of enzyme assay that the strain removed nitrogen via full nitrification-denitrification pathway. The addition of strain into the conventional MABR significantly intensified the HN-AD performance of the reactor. The relative abundance of the functional bacteria including Flavobacterium, Pseudomonas, Paracoccus, Azoarcus and Thauera was obviously increased after the bioaugmentation. Besides, the expression of the HN-AD related genes in the biofilm was also strengthened. Thus, strain B-1 had great application potential in nitrogen removal process.


Assuntos
Desnitrificação , Nitrificação , Pseudomonas/genética , Pseudomonas/metabolismo , Aerobiose , Nitrogênio/metabolismo , Biofilmes , Nitritos/metabolismo
5.
Angew Chem Int Ed Engl ; 62(28): e202304329, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37188865

RESUMO

Colloidal semiconductor II-VI metal chalcogenide (ME) magic-size clusters (MSCs) exhibit either an optical absorption singlet or doublet. In the latter case, a sharp photoluminescence (PL) signal is observed. Whether the PL-inactive MSCs transform to the PL-active ones is unknown. We show that PL-inactive CdS MSC-322 transforms to PL-active CdS MSC-328 and MSC-373 in the presence of acetic acid (HOAc). MSC-322 displays a sharp absorption at ≈322 nm, whereas MSC-328 and MSC-373 both have broad absorptions respectively around 328 and 373 nm. In a reaction of cadmium myristate and S powder in 1-octadecene, MSC-322 develops; with HOAc, MSC-328 and MSC-373 are present. We propose that the MSCs evolve from their relatively transparent precursor compounds (PCs). The PC-322 to PC-328 quasi-isomerization involves monomer substitution, while monomer addition occurs for the PC-328 to PC-373 transformation. Our findings suggest that S dominates the precursor self-assembly quantitatively, and ligand-bonded Cd mainly controls MSC optical properties.

6.
Angew Chem Int Ed Engl ; 61(35): e202205784, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35794715

RESUMO

The transformations of colloidal semiconductor magic-size clusters (MSCs) are expected to occur with only discrete, step-wise redshifts in optical absorption. Here, we challenge this assumption presenting a novel, conceptually different transformation, for which the redshift is continuous. In the room-temperature transformation from CdTe MSC-448 to MSC-488 (designated by the peak wavelengths in nanometer), the redshift of absorption monitored in situ displays distinctly continuous and/or step-wise behavior. Based on conclusive evidence provided by real-time experiments, the former transformation is apparently direct and intra-cluster with a relatively large energy barrier. The latter transformation is indirect and assisted by MSC precursor compounds (PCs). The former transformation follows the latter often, being predominant at a relatively high temperature. The present findings encourage a reconsideration of the absorption redshift reported previously for transformations of binary II-VI MSCs, together with the pathway associated without the increase of cluster mass.

7.
J Environ Sci (China) ; 98: 169-178, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33097149

RESUMO

Diclofenac (DCF), a widely used non-steroidal anti-inflammatory, reacted readily with birnessite under mild conditions, and the pseudo first order kinetic constants achieved 8.84 × 10-2 hr-1. Five products of DCF including an iminoquinone product (2,5-iminoquinone-diclofenac) and four dimer products were observed and identified by tandem mass spectrometry during the reaction. Meanwhile, 2,5-iminoquinone-diclofenac was identified to be the major product, accounting for 83.09% of the transformed DCF. According to the results of spectroscopic Mn(III) trapping experiments and X-ray Photoelectron Spectroscopy, Mn(IV) contained in birnessite solid was consumed and mainly converted into Mn(III) during reaction process, which proved that the removal of DCF by birnessite was through oxidation. Based on the identified products of DCF and the changes of Mn valence state in birnessite solid, a tentative transformation pathway of DCF was proposed.


Assuntos
Diclofenaco , Óxidos , Anti-Inflamatórios não Esteroides , Oxirredução
8.
Chemosphere ; 361: 142484, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830465

RESUMO

The natural phototransformation of organic pollutants in the environment depends on several water constituents, including inorganic ions, humic substances, and pH. However, the literature information concerning the influence of various water components on the amount of phototransformation and their impact on the development of various transformation products (TPs) is minimal. This study investigated the phototransformation of ofloxacin (OFL), a fluoroquinolone antibiotic, in the presence of various water components such as cations (K+, Na+, Ca2+, NH4+, Mg2+), anions (NO3-, SO42-, HCO3-, CO32-, PO43-), pH, and humic substances when exposed to natural sunlight. The study reveals that neutral pH levels (0.39374 min⁻1) enhance the phototransformation of OFL in aquatic environments. Carbonate, among anions, shows the highest rate constant (2.89966 min⁻1), significantly influencing OFL phototransformation, while all anions exhibit a notable impact. In aquatic environments, indirect phototransformation of OFL, driven by increased reactive oxygen species, expedites light-induced reactions, potentially enhancing OFL phototransformation. A clear difference was visible in the type of transformation products (TPs) formed during direct and indirect photolysis. The impact of indirect photolysis in the product profile was evaluated by examining the unique properties of TPs in direct and indirect photolysis. The primary transformation products were generated by oxidation and cleavage processes directed towards the ofloxacin piperazinyl, oxazine, and carboxyl groups. The toxicity assessment of TPs derived from OFL revealed that among the 26 identified TPs, TP3 (demethylated product), TP7 and TP8 (decarboxylated products), and TP15 (piperazine ring cleaved product) could potentially have some toxicological effects. These findings suggest that the phototransformation of OFL in the presence of various water components is necessary when assessing this antibiotic's environmental fate.


Assuntos
Ofloxacino , Fotólise , Poluentes Químicos da Água , Ofloxacino/química , Poluentes Químicos da Água/química , Substâncias Húmicas/análise , Luz Solar , Concentração de Íons de Hidrogênio , Antibacterianos/química , Espécies Reativas de Oxigênio/química
9.
Sci Total Environ ; 937: 173416, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38795989

RESUMO

Due to the significant POPs characteristics, dioxins caused concern in public health and environmental protection. Evaluating the toxicity risk of dioxin degradation pathways is critical. OCDD, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF, which are highly abundant in the environment and have strong biodegradation capabilities, were selected as precursor molecules in this study. Firstly, their transformation pathways were deduced during the metabolism of biometabolism, microbial aerobic, microbial anaerobic, and photodegradation pathways, and density function theory (DFT) was used to calculate the Gibbs free energy to infer the possibility of the occurrence of the transformation pathway. Secondly, the carcinogenic potential of the precursors and their degradation products was evaluated using the TOPKAT modeling method. With the help of the positive indicator (0-1) normalization method and heat map analysis, a significant increase in the toxic effect of some of the transformation products was found, and it was inferred that it was related to the structure of the transformation products. Meanwhile, the strength of the endocrine disrupting effect of dioxin transformation products was quantitatively assessed using molecular docking and subjective assignment methods, and it was found that dioxin transformation products with a higher content of chlorine atoms and molecules similar to those of thyroid hormones exhibited a higher risk of endocrine disruption. Finally, the environmental health risks caused by each degradation pathway were comprehensively assessed with the help of the negative indicator (1-2) standardization method, which provides a theoretical basis for avoiding the toxicity risks caused by dioxin degradation transformation. In addition, the 3D-QSAR model was used to verify the necessity and rationality of this study. This paper provides theoretical support and reference significance for the toxicity assessment of dioxin degradation by-products from inferred degradation pathways.


Assuntos
Biodegradação Ambiental , Dioxinas , Dioxinas/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade
10.
Sci Total Environ ; 929: 172761, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670357

RESUMO

Presently, the hydroxyl radical oxidation mechanism is widely acknowledged for the degradation of organic pollutants based on hydrodynamic cavitation technology. The presence and production mechanism of other potential reactive oxygen species (ROS) in the cavitation systems are still unclear. In this paper, singlet oxygen (1O2) and superoxide radical (·O2-) were selected as the target ROS, and their generation rules and mechanism in vortex-based hydrodynamic cavitation (VBHC) were analyzed. Computational fluid dynamics (CFD) were used to simulate and analyze the intensity characteristics of VBHC, and the relationship between the generation of ROS and cavitation intensity was thoroughly revealed. The results show that the operating conditions of the device have a significant and complicated influence on the generation of 1O2 and ·O2-. When the inlet pressure reaches to 4.5 bar, it is more favorable for the generation of 1O2 and ·O2- comparing with those lower pressure. However, higher temperature (45 °C) and aeration rate (15 (L/min)/L) do not always have positive effect on the 1O2 and ·O2- productions, and their optimal parameters need to be analyzed in combination with the inlet pressure. Through quenching experiments, it is found that 1O2 is completely transformed from ·O2-, and ·O2- comes from the transformation of hydroxyl radicals and dissolved oxygen. Higher cavitation intensity is captured and shown more disperse in the vortex cavitation region, which is consistent with the larger production and stronger diffusion of 1O2 and ·O2-. This paper shed light to the generation mechanism of 1O2 and ·O2- in VBHC reactors and the relationship with cavitation intensity. The conclusion provides new ideas for the research of effective ROS in hydrodynamic cavitation process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa