RESUMO
The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.
Assuntos
Técnicas de Cultura de Células/métodos , Colo/patologia , Células-Tronco/patologia , Células 3T3 , Animais , Colite/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/farmacologia , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacosRESUMO
The mortality rate among cancer patients is primarily attributed to tumor metastasis. The evaluation of metastasis potential provides a powerful framework for personalized therapies. However, little work has so far been undertaken to precisely model tumor metastasis in vitro, hindering the development of preventive and therapeutic interventions. In this work, a tumor-metastasis-mimicked Transwell-integrated organoids-on-a-chip platform (TOP) for precisely evaluating tumor metastatic potential is developed. Unlike the conventional Transwell device for detecting cell migration, the engineered device facilitates the assessment of metastasis in patient-derived organoids (PDO). Furthermore, a novel Transwell chamber with a hexagon-shaped structure is developed to mimic the migration of tumor cells into surrounding tissues, allowing for the evaluation of tumor metastasis in a horizontal direction. As a proof-of-concept demonstration, tumor organoids and metastatic clusters are further evaluated at the protein, genetic, and phenotypic levels. In addition, preliminary drug screening is undertaken to highlight the potential for using the device to combat cancers. In summary, the tumor-metastasis-mimicked TOP offers unique capabilities for evaluating the metastasis potential of tumor organoids and contributes to the development of personalized cancer therapies.
Assuntos
Dispositivos Lab-On-A-Chip , Metástase Neoplásica , Organoides , Organoides/patologia , Humanos , Linhagem Celular Tumoral , Movimento Celular , Sistemas MicrofisiológicosRESUMO
Introduction: Malignant melanoma (MM) is a highly aggressive skin tumour. Aim: To investigate whether miR-22 is involved in the proliferation, invasion, and migration of melanoma cells (MCs) by negatively regulating NOD-like receptor protein 3 (NLRP3) gene. Material and methods: Human MCs (WM239a) and human epidermal melanocytes (HEM) were used as study material. The expression levels of miR-22 and NLRP3 were detected by qRT-PCR. The expression of NLRP3 protein was determined by Western blot (WB) analysis. The effects of miR-22 and NLRP3 on the proliferation, invasion, and migration of MCs were evaluated by cell counting kit-8 (CCK-8), Transwell cell invasion assay, and scratch assay. Results: The expression of miR-22 was clearly lower in WM239a than in HEM. Up-regulation of miR-22 expression in WM239a clearly raised the expression of miR-22, Caspase-1, and E-cadherin and the apoptotic rate of WM239a; however, the levels of interleukin-1ß (IL-1ß) and NLRP3, cell proliferation activity, invasion and migration ability were clearly decreased. The negative regulation of NLRP3 by miR-22 may play a major role in activities of MM. Conclusions: Further studies will help to reveal the molecular details of this regulatory mechanism and provide new therapeutic strategies.
RESUMO
The blood-brain barrier (BBB) limits the uptake of central nervous system (CNS)-targeting drugs into the brain. Engineering molecular shuttles for active transportation across the barrier has thus potential for improving the efficacy of such drugs. In vitro assessment of potential transcytosis capability for engineered shuttle proteins facilitates ranking and the selection of promising candidates during development. Herein, the development of an assay based on brain endothelial cells cultured on permeable recombinant silk nanomembranes for screening of transcytosis capability of biomolecules is described. The silk nanomembranes supported growth of brain endothelial cells to form confluent monolayers with relevant cell morphology, and induced expression of tight-junction proteins. Evaluation of the assay using an established BBB shuttle antibody showed transcytosis over the membranes with an apparent permeability that significantly differed from the isotype control antibody.
Assuntos
Barreira Hematoencefálica , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Seda/metabolismo , Encéfalo/metabolismo , TranscitoseRESUMO
BACKGROUND: Glioma is the most prevalent primary tumor of the central nervous system. Glioblastoma multiforme (GBM) is the most malignant form of glioma with an extremely poor prognosis. A novel, regulated cell death form of copper-induced cell death called "cuproptosis" provides a new prospect for cancer treatment by regulating cuproptosis. METHODS: Data from bulk RNA sequencing (RNA-seq) analysis (The Cancer Genome Atlas cohort and Chinese Glioma Genome Atlas cohort) and single cell RNA-seq (scRNA-seq) analysis were integrated to reveal their relationships. A scoring system was constructed according to the cuproptosis-related gene expression, and core genes were experimentally verified using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot (WB), immunohistochemistry (IHC), and immunofluorescence (IF). Moreover, cell counting kit-8 (CCK8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, transwell, and flow cytometry cell cycle were performed to evaluate cell proliferation, invasion, and migration. RESULTS: The Cuproptosis Activation Scoring (CuAS) Model has stable and independent prognostic efficacy, as verified by two CGGA datasets. Epiregulin (EREG), the gene of the model has the most contributions in the principal component analysis (PCA), is an onco-immunological gene that can affect immunity by influencing the expression of programmed death-ligand 1 (PD-L1) and mediate the process of cuproptosis by influencing the expression of ferredoxin 1 (FDX1). Single cell transcriptome analysis revealed that high CuAS GBM cells are found in vascular endothelial growth factor A (VEGFA) + malignant cells. Oligodendrocyte transcription factor 1 (OLIG1) + malignant is the original clone, and VEGF and CD99 are the differential pathways of specific cell communication between the high and low CuAS groups. This was also demonstrated by immunofluorescence in the tissue sections. Furthermore, CuAS has therapeutic potential for immunotherapy, and we predict that many drugs (methotrexate, NU7441, KU -0063794, GDC-0941, cabozantinib, and NVP-BEZ235) may be used in patients with high CuAS. CONCLUSION: EREG is the core onco-immunological biomarker of CuAS and modulates the cross-talk between VEGF and CD99 signaling in glioblastoma, and CuAS may provide support for immunotherapy and chemotherapy.
Assuntos
Apoptose , Epirregulina , Glioblastoma , Glioma , Humanos , Antígeno 12E7 , Biomarcadores , Glioblastoma/genética , Glioma/genética , Peptídeos e Proteínas de Sinalização Intercelular , Fator A de Crescimento do Endotélio VascularRESUMO
BACKGROUND: There is considerable evidence that microRNAs (miRNAs) regulate several key tumor-associated genes/pathways and may themselves have a dual regulatory function either as tumor suppressors or oncogenic miRNA, depending on the tumor type. MicroRNA-590-3p (miR-590-3p) is a small non-coding RNA involved in the initiation and progression of numerous tumors. However, its expression pattern and biological role in hepatocellular carcinoma (HCC) are controversial. RESULTS: In the current work, computational and RT-qPCR analysis revealed that HCC tissues and cell lines exhibited miR-590-3p downregulation. Forced expression of miR-590-3p attenuated HepG2 cells proliferation, migration, and repressed EMT-related gene expression. Bioinformatic, RT-qPCR, and luciferase assays revealed that MDM2 is a direct functional target of miR-590-3p. Moreover, the knockdown of MDM2 mimicked the inhibitory effect of miR-590-3p in HepG2 cells. CONCLUSION: We have identified not only novel targets for miR-590-3p in HCC, but also novel target genes for miR590-3p/MDM2 pathway in HCC like SNAIL, SLUG, ZEB1, ZEB2, and N-cadherin. Furthermore, these findings demonstrate a crucial role for MDM2 in the regulatory mechanism of EMT in HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismoRESUMO
PURPOSE: The leaky gut barrier is an important factor leading to various inflammatory gastrointestinal disorders. The nutritional value of honey and variety of its health benefits have long been recognized. This study was undertaken to assess the role of Indian mustard honey in preventing lipopolysaccharide (LPS)-induced intestinal barrier dysfunction using a combination of in vitro and in vivo experimental model systems. METHODS: LPS was used to induce intestinal barrier damage in a trans-well model of Caco-2 cells (1 µg/ml) and in Swiss albino mice (5 mg/kg body weight). Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyse sugar and phenolic components in honey samples. The Caco-2 cell monolayer integrity was evaluated by transepithelial electrical resistance (TEER) and paracellular permeability assays. The histopathology of intestinal tissue was analysed by haematoxylin and eosin dual staining. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the transcription of genes. The protein expression was analysed by immunofluorescence, western blot and ELISA-based techniques. RESULTS: The in vitro data showed that honey prevented LPS-induced intestinal barrier dysfunction dose dependently as was measured by TEER and paracellular flux of FITC-dextran dye. Further, the in vivo data showed a prophylactic effect of orally administered honey as it prevented the loss of intestinal barrier integrity and villus structure. The cellular localization and expression of tight junction (TJ) proteins were upregulated along with downregulation of pro-inflammatory cytokines in response to the administration of honey with LPS. CONCLUSIONS: The findings of this study suggest a propitious role of honey in the maintenance of TJ protein integrity, thereby preventing LPS-induced intestinal barrier disintegration.
Assuntos
Gastroenteropatias , Mel , Enteropatias , Humanos , Camundongos , Animais , Células CACO-2 , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Regulação para Cima , Lipopolissacarídeos/metabolismo , Junções Íntimas/metabolismo , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Mucosa Intestinal/metabolismo , PermeabilidadeRESUMO
Central nervous system (CNS) disorders represent one of the leading causes of global health burden. Nonetheless, new therapies approved against these disorders are among the lowest compared to their counterparts. The absence of reliable and efficient in vitro blood-brain barrier (BBB) models resembling in vivo barrier properties stands out as a significant roadblock in developing successful therapy for CNS disorders. Therefore, advancement in the creation of robust and sensitive in vitro BBB models for drug screening might allow us to expedite neurological drug development. This review discusses the major in vitro BBB models developed as of now for exploring the barrier properties of the cerebral vasculature. Our main focus is describing existing in vitro models, including the 2D transwell models covering both single-layer and co-culture models, 3D organoid models, and microfluidic models with their construction, permeability measurement, applications, and limitations. Although microfluidic models are better at recapitulating the in vivo properties of BBB than other models, significant gaps still exist for their use in predicting the performance of neurotherapeutics. However, this comprehensive account of in vitro BBB models can be useful for researchers to create improved models in the future.
Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Humanos , Transporte Biológico , Fármacos do Sistema Nervoso Central , Microfluídica , Modelos BiológicosRESUMO
The intestinal epithelium constitutes a selectively permeable barrier between the internal and external environment that allows the absorption of nutrients, electrolytes, and water, as well as an effective defense against intraluminal bacteria, toxins, and potentially antigenic material. Experimental evidence suggest that intestinal inflammation is critically dependent on an imbalance of homeostasis between the gut microbiota and the mucosal immune system. In this context, mast cells play a crucial role. The intake of specific probiotic strains can prevent the development of gut inflammatory markers and activation of the immune system. Here, the effect of a probiotic formulation containing L. rhamnosus LR 32, B. lactis BL04, and B. longum BB 536 on intestinal epithelial cells and mast cells was investigated. To mimic the natural host compartmentalization, Transwell co-culture models were set up. Co-cultures of intestinal epithelial cells interfaced with the human mast cell line HMC-1.2 in the basolateral chamber were challenged with lipopolysaccharide (LPS), and then treated with probiotics. In the HT29/HMC-1.2 co-culture, the probiotic formulation was able to counteract the LPS-induced release of interleukin 6 from HMC-1.2, and was effective in preserving the epithelial barrier integrity in the HT29/Caco-2/ HMC-1.2 co-culture. The results suggest the potential therapeutic effect of the probiotic formulation.
Assuntos
Mastócitos , Probióticos , Humanos , Técnicas de Cocultura , Células CACO-2 , Lipopolissacarídeos , Células Epiteliais , Mucosa Intestinal , Probióticos/farmacologiaRESUMO
Lobophorins (LOBs) are a growing family of spirotetronate natural products with significant cytotoxicity, anti-inflammatory, and antibacterial activities. Herein, we report the transwell-based discovery of Streptomyces sp. CB09030 from a panel of 16 in-house Streptomyces strains, which has significant anti-mycobacterial activity and produces LOB A (1), LOB B (2), and LOB H8 (3). Genome sequencing and bioinformatic analyses revealed the potential biosynthetic gene cluster (BGC) for 1-3, which is highly homologous with the reported BGCs for LOBs. However, the glycosyltransferase LobG1 in S. sp. CB09030 has certain point mutations compared to the reported LobG1. Finally, LOB analogue 4 (O-ß-D-kijanosyl-(1â17)-kijanolide) was obtained through an acid-catalyzed hydrolysis of 2. Compounds 1-4 showed different antibacterial activities against Mycobacterium smegmatis and Bacillus subtilis, which revealed the varying roles of different sugars in their antibacterial activities.
Assuntos
Streptomyces , Streptomyces/química , Macrolídeos/química , Antibacterianos/química , Sequência de Bases , Família MultigênicaRESUMO
Liver cancer is one of the most prevalent cancers in Japan with hepatocellular carcinoma (HCC) as the major histological subtype. Successful novel treatments for HCC have been reported; however, recurrences or metastasis may occur, which results in poor prognoses and high mortality of HCC patients. Fascin, an actin-bundling protein, regulates cell adhesion, migration, and invasion. Its overexpression positively correlates with poor prognosis of malignant tumors, and Fascin is considered as one of the tumor biomarkers and therapeutic target proteins. In this study, we attempted to reveal the relationship between Fascin and HCC using HLE, one of the human HCC cell lines. We performed the study with classical immunocytochemistry and recently developed techniques, such as wound-healing assay, spheroid cultivation, and low-vacuum scanning electron microscopy (LV-SEM). Non-Fascin-knockdown (FKD) cell spheroid had a regular spherical appearance with tight cell-cell connections, while FKD cell spheroid had an irregular shape with loose cell-cell connections. Cells of non-FKD spheroid presented fibrous protrusions on the cell surface, contrarily, cells of FKD spheroids showed bulbous-shaped protrusions. Morphological observation of FKD and non-FKD HLE spheroids were performed using LV-SEM. Our study may help to reveal the roles of Fascin in the process of HCC formation and its malignancy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Microscopia Eletrônica de Varredura , Vácuo , Invasividade Neoplásica , Linhagem Celular Tumoral , Movimento CelularRESUMO
BACKGROUND: The autoimmune regulator (Aire) gene is critical for the appropriate establishment of central immune tolerance. As one of the main controllers of promiscuous gene expression in the thymus, Aire promotes the expression of thousands of downstream tissue-restricted antigen (TRA) genes, cell adhesion genes and transcription factor genes in medullary thymic epithelial cells (mTECs). Despite the increasing knowledge about the role of Aire as an upstream transcriptional controller, little is known about the mechanisms by which this gene could be regulated. RESULTS: Here, we assessed the posttranscriptional control of Aire by miRNAs. The in silico miRNA-mRNA interaction analysis predicted thermodynamically stable hybridization between the 3'UTR of Aire mRNA and miR-155, which was confirmed to occur within the cellular milieu through a luciferase reporter assay. This finding enabled us to hypothesize that miR-155 might play a role as an intracellular posttranscriptional regulator of Aire mRNA. To test this hypothesis, we transfected a murine mTEC cell line with a miR-155 mimic in vitro, which reduced the mRNA and protein levels of Aire. Moreover, large-scale transcriptome analysis showed the modulation of 311 downstream mRNAs, which included 58 TRA mRNAs. Moreover, miR-155 mimic-transfected cells exhibited a decrease in their chemotaxis property compared with control thymocytes. CONCLUSION: Overall, the results indicate that miR-155 may posttranscriptionally control Aire mRNA, reducing the respective Aire protein levels; consequently, the levels of mRNAs encode tissue-restricted antigens were affected. In addition, miR-155 regulated a crucial process by which mTECs allow thymocytes' migration through chemotaxis.
Assuntos
MicroRNAs , Fatores de Transcrição , Animais , Células Epiteliais/metabolismo , Camundongos , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Proteína AIRERESUMO
Chemotaxis is the directed movement of neutrophils towards an infected site. This physiological process can be reproduced using a modified Boyden chamber, such as the Transwell® support. Different techniques can be used to count neutrophils after migration to the lower chamber of the holder. The present study supports the use of an optimized Transwell® assay coupled with a flow cytometry-based method (Sysmex XN-9000) to detect chemotaxis abnormalities. A reference interval of neutrophil's chemotaxis was determined as part of this work. A first step involves the extraction of neutrophils from whole blood. The migration of neutrophils from the upper to the lower support chamber is subsequently directed by a chemoattractant gradient using N-formyl-l-Methionyl-l-Leucyl-l-Phenylalanine (fMLP). Neutrophils collected in the lower chamber are finally counted by flow cytometry. The original protocol was optimized through the comparison of different parameters. The use of Polymorphprep®, in the extraction of neutrophils, showed an improvement of the neutrophils yield of 1.65 times (57.5% of recovery) compared to the extraction using the Ficoll-Hypaque® gradient. A solution containing 5% of Bovin Serum Albumin (BSA) was used to suspend the extracted neutrophils, stabilize their viability and preserve their integrity. The mechanical agitation of the Transwell® permeable supports during migration did not show an increase in neutrophil yield. A migration time of 1 h 30 was identified as the best time for collecting the largest number of neutrophils after migration. Finally, we demonstrated that scraping the bottom of the well after migration improved neutrophil collection from the lower chamber by 1.9-fold compared to a non-scraping method. In conclusion, our results support the use of Polymorphprep® and a 5% BSA solution in the suspension, without agitation of the medium. An incubation time of 1 h 30 was identified as optimal for neutrophil migration through the chamber. Scraping the bottom after neutrophil migration improved neutrophil collection yield. Normal adult values were obtained with directed migration equal to 32.4% ±13.41% on 15 men and 18 women.
Assuntos
Quimiotaxia , Neutrófilos , Adulto , Quimiotaxia de Leucócito/fisiologia , Feminino , Citometria de Fluxo , Humanos , Masculino , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/fisiologiaRESUMO
We describe the development of two methods for obtaining confluent monolayers of polarized, differentiated equine oviduct epithelial cells (EOEC) in Transwell inserts and microfluidic chips. EOECs from the ampulla were isolated post-mortem and seeded either (1) directly onto a microporous membrane as differentiated EOECs (direct seeding protocol) or (2) first cultured to a confluent de-differentiated monolayer in conventional wells, then trypsinized and seeded onto a microporous membrane (re-differentiation protocol). Maintenance or induction of EOEC differentiation in these systems was achieved by air-liquid interface introduction. Monolayers cultured via both protocols were characterized by columnar, cytokeratin 19-positive EOECs in Transwell inserts. However, only the re-differentiation protocol could be transferred successfully to the microfluidic chips. Integrity of the monolayers was confirmed by transepithelial resistance measurements, tracer flux, and the demonstration of an intimate network of tight junctions. Using the direct protocol, 28% of EOECs showed secondary cilia at the apical surface in a diffuse pattern. In contrast, re-differentiated polarized EOECs rarely showed secondary cilia in either culture system (>90% of the monolayers showed <1% ciliated EOECs). Occasionally (5-10%), re-differentiated monolayers with 11-27% EOECs with secondary cilia in a diffuse pattern were obtained. Additionally, nuclear progesterone receptor expression was found to be inhibited by simulated luteal phase hormone concentrations, and sperm binding to cilia was higher for re-differentiated EOEC monolayers exposed to estrogen-progesterone concentrations mimicking the follicular rather than luteal phase. Overall, a functional equine oviduct model was established with close morphological resemblance to in vivo oviduct epithelium.
Assuntos
Tubas Uterinas , Oviductos , Animais , Células Cultivadas , Células Epiteliais , Epitélio/fisiologia , Feminino , Cavalos , HumanosRESUMO
BACKGROUND: Glioma is the most common cancer in the central nervous system, and low grade gliomas are notorious for many types of tumors and heterogeneity. PROS1 not only plays an important role in the blood coagulation system, and recent studies have found that it was correlated with the development of tumors, especially related to tumor immune infiltration. However, the study of underlying role and mechanism of PROS1 in gliomas, especially in low-grade gliomas, is almost absent. METHODS: We integrated the information of patients with LGG in The Cancer Genome Atlas (TCGA) cohort and Chinese Glioma Genome Atlas (CGGA) cohort. Then, we systematically demonstrated the differences and prognostic prognosis value of PROS1 based on multi-omics analyses. In addition, Cell counting kit-8 (CCK-8) assay, colony formation assay, 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay, and Transwell assays were performed to evaluate cell proliferation and invasion. qRT-PCR and immunohistochemistry were used to evaluate the expression of PROS1 in LGG. RESULTS: Various bioinformatics approaches revealed that PROS1 was a valuable prognostic marker and may influence tumour development via distinct mechanisms, including expression of DNA methyltransferase, RNA modification, and DNA mismatch repair system genes, copy number variation, single nucleotide variation frequency, genomic heterogeneity, cancer stemness, DNA methylation, and alternative PROS1 splicing. Our analyses indicated that the long non-coding RNA RP3-525N10.2 may "decoy" or "guide" the transcription factor NFKB1 and prevent its association with PROS1, thereby reducing PROS1 expression and improving poor LGG prognosis. PROS1 expression was also closely associated with tumour infiltration by immune cells, especially tumour-associated macrophages, as well as the expression of various immune checkpoint inhibitors, immunomodulators, and immune cell markers. CONCLUSION: long non-coding RNA RP3-525N10.2-NFKB1-PROS1 triplet-mediated PROS1 expression could serve as a biomarker for cancer diagnosis, prognosis, therapy selection, and follow-up in LGG patients.
Assuntos
Neoplasias Encefálicas , Glioma , RNA Longo não Codificante , Biomarcadores , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Glioma/patologia , Humanos , Subunidade p50 de NF-kappa B/genética , Prognóstico , Proteína S/genética , RNA Longo não Codificante/genéticaRESUMO
Dissolution rate impacts the absorption rate of poorly soluble inhaled drugs. In vitro dissolution tests that can capture the impact of changes in critical quality attributes of the drug product on in vivo dissolution are important for the development of products containing poorly soluble drugs, as well as modified release formulations. In this study, an extended mathematical model allowing for dissolution of polydisperse powders and subsequent diffusion of dissolved drug across a membrane is described. In vitro dissolution profiles of budesonide, fluticasone propionate, and beclomethasone dipropionate delivered from three commercial drug products were determined using a membrane-type Transwell dissolution test, which consists of a donor and an acceptor compartment separated by a membrane. Subsequently, the profiles were analyzed using the developed mechanistic model and a semi-empirical model based on the Weibull distribution. The two mathematical models provided the same rank order of the performance of the three drug products in terms of dissolution rates, but the rates were significantly different. The faster rate extracted from the mechanistic model is expected to reflect the true dissolution rate of the drug; the Weibull model provides an effective and slower rate that represents not only drug dissolution but also diffusion across the Transwell membrane. In conclusion, the developed extended model provides superior understanding of the dissolution mechanisms in membrane-type (Transwell) dissolution tests.
Assuntos
Budesonida , Administração por Inalação , Fluticasona , Pós , SolubilidadeRESUMO
BACKGROUND: Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123-614 µM ZnO NP. RESULTS: In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. CONCLUSIONS: Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.
Assuntos
Nanopartículas , Óxido de Zinco , Células CACO-2 , Humanos , Intestinos , Nanopartículas/toxicidade , Zinco , Óxido de Zinco/química , Óxido de Zinco/toxicidadeRESUMO
A new cell line was established from the brain of a cultured fish, tilapia (Oreochromis niloticus), designated as TA-02 (Tilapia Astrocyte clone 02 cell line). The TA-02 cells are grown for 300 days in an L-15 medium supplemented with 10% fetal bovine serum (FBS). This cell line showed excellent proliferative capacity and expressed various neuroglial cell markers, including SOX2, SOX10, Hes1, Notch1, Occludin, E-cadherin, and GFAP. In addition, TA-02 cells were susceptible to Tilapia Lake Virus (TiLV) as demonstrated by the presence of a severe cytopathic effect (CPE), virus particle in a transmission electron microscope (TEM), and PCR positive signal. Bacterial cytotoxicity studies showed that Streptococcus agalactiae was toxic to TA-02 cells. When co-culture with trans-well, TA-02 exhibited prominent barrier properties, manifested by tight intercellular junctions and increased trans-endothelial electrical resistance (TEER). In addition, the barrier is effective against Escherichia coli (non-meningitis pathogenic bacteria). In contrast, S. agalactiae (meningitis pathogenic bacteria) can pass through the membrane comprising the cells in the trans-well insert. The newly established TA-02 cell line provided a valuable tool for virus pathogenesis and a vitro model of the fish blood-brain barrier.
Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Astrócitos , Bactérias , Barreira Hematoencefálica , Encéfalo , Linhagem Celular , Ciclídeos/microbiologia , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiaeRESUMO
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds' screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologiaRESUMO
In vitro blood-brain barrier (BBB) modeling with the use of the brain endothelial cells grown on a transwell membrane is widely used to investigate BBB disorders and factors intended to ameliorate these pathologies. Endothelial cells, due to tight junction proteins, ensure selective permeability for a number of substances. The low integrity (i.e., high permeability) of the BBB model, as compared to the physiological one, complicates evaluation of the effects caused by different agents. Thus, the selection of conditions to improve barrier integrity is an essential task. In this study, mouse brain endothelial cells bEnd.3 are used in experiments on transwell modeling. To determine which factors enhance BBB integrity, the effects of the cultivation medium, the number of cells during seeding, the state of the transwell membrane, and cultivation in the presence or in the absence of primary mouse neurons and matrigel as a matrix on the passage of a fluorescent label through the cell monolayer were assessed. The effect of fetal bovine serum on the tight junction protein claudin-5 was analyzed by immunocytochemistry. The obtained cultivation parameter data facilitate the solution to the problem of low integrity of the BBB transwell model and bring the model closer to the physiologically relevant indicators.