Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Med Vet Entomol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167411

RESUMO

Chagas disease is considered one of the most important human parasitosis in the United States. This disease is mainly transmitted by insects of the subfamily Triatominae. The chemical vector control is the main tool for reducing the incidence of the disease. However, the presence of triatomines after pyrethroids spraying has been reported in some regions, as in the case of Triatoma infestans in Argentina and Bolivia. The presence of insects can be explained by the colonization from neighbouring areas, the reduction of insecticide dose to sublethal levels due to environmental factors, and/or by the evolution of insecticide resistance. In the last two scenarios, a proportion of the insects is not killed by insecticide and gives rise to residual populations. This article focuses on the toxicological processes associated with these scenarios in triatomines. Sublethal doses may have different effects on insect biology, that is, sublethal effects, which may contribute to the control. In addition, for insect disease vectors, sublethal doses could have negative effects on disease transmission. The study of sublethal effects in triatomines has focused primarily on the sequence of symptoms associated with nervous intoxication. However, the effects of sublethal doses on excretion, reproduction and morphology have also been studied. Rhodnius prolixus and T. infestans and pyrethroids insecticides were the triatomine species and insecticides, respectively, mainly studied. Insecticide resistance is an evolutionary phenomenon in which the insecticide acts as a selective force, concentrating on the insect population's pre-existing traits that confer resistance. This leads to a reduction in the susceptibility to the insecticide, which was previously effective in controlling this species. The evolution of resistance in triatomines received little attention before the 2000s, but after the detection of the first focus of resistance associated with chemical control failures in T. infestans from Argentina in 2002, the study of resistance increased remarkably. A significant number of works have studied the geographical distribution, the resistance mechanisms, the biological modifications associated with resistance, the environmental influences and the genetic of T. infestans resistant to pyrethroid insecticides. Currently, studies of insecticide resistance are gradually being extended to other areas and other species. The aim of this article was to review the knowledge on both phenomena (sublethal effects and insecticide resistance) in triatomines. For a better understanding of this article, some concepts and processes related to insect-insecticide interactions, individual and population toxicology and evolutionary biology are briefly reviewed. Finally, possible future lines of research in triatomine toxicology are discussed.

2.
J Invertebr Pathol ; 206: 108161, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914370

RESUMO

Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease in the American continent. Here, we have tested a loop-mediated isothermal amplification (LAMP) test for a direct detection of T. cruzi in feces of Triatoma infestans, the main vector of this parasite in the Southern Cone of America. The analytical evaluation showed positive results with samples of triatomine feces artificially inoculated with DNA from strains of T. cruzi corresponding to each Discrete Typing Units (I-VI), with a sensitivity of up to one parasite per reaction. Conversely, the reaction yielded negative results when tested with DNA from Trypanosoma rangeli and other phylogenetically related and unrelated organisms. In triatomines captured under real field conditions (from urban households), and defined as positive or negative for T. cruzi using the reference microscopy technique, the LAMP test achieved a concordance of 100 %. Our results demonstrate that this LAMP reaction exhibits excellent analytical specificity and sensitivity without interference from the fecal matrix, since all the reactions were conducted without purification steps. This simple molecular diagnostic technique can be easily used by vector control agencies under field conditions.

3.
Arch Insect Biochem Physiol ; 113(3): e22013, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36973856

RESUMO

Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.


Assuntos
Triatoma , Animais , Saliva , Muramidase , Comportamento Alimentar , Glândulas Salivares
4.
BMC Genomics ; 23(1): 861, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585617

RESUMO

BACKGROUND: Triatoma infestans is the main vector of Chagas disease in the Americas, currently transmitting it in Argentina, Paraguay, and Bolivia. Many T. infestans populations present insecticide resistance, reducing the efficiency of control campaigns. Alternative vector control methods are needed, and molecular targets mediating fundamental physiological processes can be a promising option to manipulate kissing bug behavior. Therefore, it is necessary to characterize the main sensory targets, as well as to determine whether they are modulated by physiological factors. In order to identify gene candidates potentially mediating host cue detection, the antennal transcripts of T. infestans fifth instar larvae were sequenced and assembled. Besides, we evaluated whether a blood meal had an effect on transcriptional profiles, as responsiveness to host-emitted sensory cues depends on bug starvation. RESULTS: The sensory-related gene families of T. infestans were annotated (127 odorant receptors, 38 ionotropic receptors, 11 gustatory receptors, 41 odorant binding proteins, and 25 chemosensory proteins, among others) and compared to those of several other hemipterans, including four triatomine species. Several triatomine-specific lineages representing sensory adaptations developed through the evolution of these blood-feeding heteropterans were identified. As well, we report here various conserved sensory gene orthogroups shared by heteropterans. The absence of the thermosensor pyrexia, of pickpocket receptor subfamilies IV and VII, together with clearly expanded takeout repertoires, are revealed features of the molecular bases of heteropteran antennal physiology. Finally, out of 2,122 genes whose antennal expression was significantly altered by the ingestion of a blood meal, a set of 41 T. infestans sensory-related genes (9 up-regulated; 32 down-regulated) was detected. CONCLUSIONS: We propose that the set of genes presenting nutritionally-triggered modulation on their expression represent candidates to mediate triatomine host-seeking behavior. Besides, the triatomine-specific gene lineages found represent molecular adaptations to their risky natural history that involves stealing blood from an enormously diverse set of vertebrates. Heteropteran gene orthogroups identified may represent unknown features of the sensory specificities of this largest group of hemipteroids. Our work is the first molecular characterization of the peripheral modulation of sensory processes in a non-dipteran vector of human disease.


Assuntos
Doença de Chagas , Triatoma , Animais , Humanos , Triatoma/genética , Triatoma/metabolismo , Transcriptoma , Bolívia , Resistência a Inseticidas
5.
Trop Med Int Health ; 26(9): 1127-1138, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34114721

RESUMO

OBJECTIVE: Failure to control domestic Triatoma infestans in the Chaco is attributed to vulnerable adobe construction, which provides vector refuges and diminishes insecticide contact. We conducted a pilot to test the impact of housing improvement plus indoor residual spraying (IRS) on house infestation and vector abundance in a rural community in the Bolivian Chaco. METHODS: The intervention included three arms: housing improvement + IRS [HI], assisted IRS [AS] in which the team helped to clear the house pre-IRS and routine IRS [RS]. HI used locally available materials, traditional construction techniques and community participation. Vector parameters were assessed by Timed Manual Capture for 2 person-hours per house at baseline and medians of 114, 173, 314, 389 and 445 days post-IRS-1. A second IRS round was applied at a median of 314 days post-IRS-1. RESULTS: Post-intervention infestation indices and abundance fell in all three arms. The mean odds of infestation was 0.29 (95% CL 0.124, 0.684) in the HI relative to the RS arm. No difference was observed between AS and RS. Vector abundance was reduced by a mean 44% (24.8, 58.0) in HI compared to RS, with no difference between AS and RS. Median delivered insecticide concentrations per house were lower than the target of 50 mg/m2 in >90% of houses in all arms. CONCLUSION: Housing improvement using local materials and community participation is a promising strategy to improve IRS effectiveness in the Bolivian Chaco. A larger trial is needed to quantify the impact on reinfestation over time.


Assuntos
Materiais de Construção/normas , Habitação/normas , Insetos Vetores , Inseticidas/administração & dosagem , Triatoma , Trypanosoma cruzi , Animais , Bolívia , Doença de Chagas/prevenção & controle , Participação da Comunidade , Projetos Piloto , População Rural
6.
Parasitology ; 148(3): 295-301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32940196

RESUMO

The escape kinetics from the anterior midgut (AM) of Trypanosoma cruzi during the initial steps of infection was assessed in Triatoma infestans, as well as its ability to survive migration in the digestive tract of the vector. All the four strains evaluated survived and reached variable parasite densities. After 49-50 days, YuYu [discrete typing units (DTU) I] strain reached the highest parasite numbers in the rectum followed by Bug (DTU V), CL-Brener (DTU VI) and Dm28c (DTU I). All strains accomplished metacyclogenesis. Bug strain reached the highest numbers of metacyclic trypomastigotes followed by YuYu and CL-Brener/Dm28c. A remarkable parasite reduction in the AM for Bug strain, but not Dm28c was noticed at 72 h of infection. In the posterior midgut + rectum high densities of parasites from both strains were detected at this period indicating the parasites crossed the AM. For Dm28c strain, in infections initiated with trypomastigotes, parasites left AM faster than those starting with epimastigotes. In conclusion, T. cruzi strains from different DTUs were able to infect T. infestans reaching variable parasite densities. The kinetics of migration in the digestive tract may be affected by strain and/or the evolutive form used for infection.


Assuntos
Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Trato Gastrointestinal/parasitologia , Ninfa/parasitologia
7.
Parasitol Res ; 120(6): 2263-2268, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33835244

RESUMO

The insecticide resistance in Triatoma infestans (Klug, 1834) was detected in different areas of its geographical distribution. The mechanisms of resistance involved can affect different biological processes in addition to toxicological ones. Previous studies showed that reproductive efficiency was modified in resistant females compared to susceptible ones. The objective of this study was to compare the autogenic capacity and subsequent reproductive potential between deltamethrin-resistant and susceptible T. infestans. For each toxicological phenotype, pairs were formed between unfed adult females and recently fed adult male, which were separated after confirming copulation. Females were observed weekly until death, and reproductive parameters (initiation of mating, initiation of oviposition, fecundity, fertility and period between mating and initiation of oviposition) were recorded. Females from both toxicological phenotypes showed autogenic capacity. However, a lower proportion of deltamethrin-resistant unfed females laid eggs. Autogenic females showed a higher nutritional status than non-autogenic ones. No other differences in reproductive parameters were found between resistant and susceptible autogenic females. The possible mechanisms underlying the differences observed and their consequences on the spread of resistance are discussed. This is the first report describing the effect of pyrethroid resistance on T. infestans autogeny.


Assuntos
Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Triatoma/efeitos dos fármacos , Animais , Feminino , Fertilidade/efeitos dos fármacos , Masculino , Oviposição/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Triatoma/genética , Triatoma/fisiologia
8.
Arch Insect Biochem Physiol ; 105(4): e21745, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33029844

RESUMO

Chagas disease is one of the most important insect-vectored diseases in Brazil. The entomopathogenic fungus Metarhizium anisopliae was evaluated against nymphs and adults of Panstrongylus megistus, Triatoma infestans, and T. sordida. Pathogenicity tests at saturated humidity demonstrated high susceptibility to fungal infection. The shortest estimates of 50% lethal time (LT50 ) for P. megistus varied from 4.6 (isolate E9) to 4.8 days (genetically modified strain 157p). For T. infestans, the shortest LT50 was 6.3 (E9) and 7.3 days (157p). For T. sordida, the shortest LT50 was 8.0 days (157p). The lethal concentration sufficient to kill 50% of T. infestans (LC50 ) was 1.9 × 107 conidia/ml for strain 157p. In three chicken coops that were sprayed with M. anisopliae, nymphs especially were well controlled, with a great population reduction of 38.5% after 17 days. Therefore M. anisopliae performed well, controlling Triatominae in both laboratory and field studies.


Assuntos
Metarhizium/patogenicidade , Panstrongylus/microbiologia , Controle Biológico de Vetores/métodos , Triatoma/microbiologia , Animais , Brasil , Doença de Chagas/prevenção & controle , Galinhas , Abrigo para Animais , Umidade , Insetos Vetores/microbiologia , Ninfa/microbiologia
9.
Exp Parasitol ; 218: 107986, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32882206

RESUMO

In South America, Triatoma infestans (Hemiptera: Reduviidae) is the main vector of the parasite Trypanosoma cruzi, etiological agent of Chagas disease. The main strategy for vector control is to spray domestic structures with pyrethroids. Reports of populations of T. infestans with varying degrees of resistance to pyrethroids have made the search for alternative molecules for vector control necessary. In the first stage of this work we investigated the lethal activity of amitraz and deltamethrin against susceptible and pyrethroid-resistant nymphs of Triatoma infestans. Lethal dose at 50% (LD50) of susceptible nymphs were compared with those recorded in pyrethroid-resistant nymphs and the resistance ratio (RR50) was obtained. The RR50 of deltamethrin was approximately 300. In the case of amitraz, we observed similar triatomicidal activity in the two nymph populations (RR50: 0.7). In a second stage of the work, we determined the synergistic effect of amitraz and piperonyl butoxide (PBO) on the lethal activity of deltamethrin. The strong synergistic effect of PBO on the lethal activity of deltamethrin in resistant nymphs produced a decrease in RR50 to almost one third of the RR50 reported in absence of the synergist. Amitraz plus PBO lethal activity was similarly increased in pyrethroid susceptible and resistant nymphs. Our data indicate that deltamethrin synergism by amitraz was higher against resistant than to susceptible nymphs (Synergist ratio (SR50) of: 7.2- and 4.1-fold, respectively). In pyrethroid resistant nymphs, the highest level of synergism was obtained combining deltamethrin with amitraz and PBO (SR50: 26.7-fold). These results indicate that this combination could be considered an effective alternative for the control of T. infestans.


Assuntos
Inseticidas/farmacologia , Nitrilas/farmacologia , Sinergistas de Praguicidas/farmacologia , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Toluidinas/farmacologia , Triatoma/efeitos dos fármacos , Animais , Sinergismo Farmacológico , Resistência a Inseticidas , Ninfa/efeitos dos fármacos
10.
Bull Entomol Res ; 110(5): 645-653, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32349799

RESUMO

Triatoma infestans (Klug) (Hemiptera: Reduviidae) is the main vector of Chagas disease in the Southern Cone of America and resistance to pyrethroid insecticides has been detected in several areas from its geographical distribution. Pyrethroid resistance presents a complex geographical pattern at different spatial scales. However, it is still unknown if the toxicological variability is a common feature within villages of the Gran Chaco were high resistance was descripted. The objectives of this study were to determine: (a) the microgeographical distribution of the deltamethrin-resistance in insects from Pampa Argentina village, (b) the performance of the insecticide impregnated paper bioassay to evaluate deltamethrin-resistance in field collected insects and (c) the lethal activity of the fumigant canister containing DDVP against insects resistant to deltamethrin. High survival of T. infestans exposed to discriminant dose was observed in the samples of all the evaluated dwellings, suggesting that the resistance to deltamethrin is homogeneous at the microgeographical level. Resistance determination by impregnated paper bioassay was similar to traditional topical determination, highlighting the use of this rapid methodology in field large-scale monitoring. The fumigant canister was not effective against resistant insects, remarking the need to develop suitable formulations that ensure minimal toxicological risk and high effectivity.


Assuntos
Diclorvós , Resistência a Inseticidas , Nitrilas , Piretrinas , Triatoma , Animais , Argentina , Bioensaio/instrumentação , Doença de Chagas/prevenção & controle , Fumigação/métodos , Insetos Vetores , Inseticidas
11.
Bull Entomol Res ; 110(1): 169-176, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31337451

RESUMO

Transmission of Trypanosma cruzi (Kinetoplastida: Trypanosomatidae) occurs when feces/urine of infected triatomines come into contact with mucous membranes or damaged skin, and this occurs mainly when insects defecate while feeding on the host. Thus, the vector competence of the triatomines is associated with their feeding and excretion/defecation behavior. This work studied for the first time the effect of T. cruzi infection on feeding and excretion/defecation patterns of Triatoma infestans (Hemiptera: Reduviidae). Uninfected and infected fifth-instar nymphs were fed ad libitum and their feeding behavior and defecations were registered during and after feeding. The feeding pattern did not show differences between the experimental groups. However, the infected nymphs began to defecate earlier, defecated in greater quantity and there was a greater proportion of defecating individuals compared to uninfected nymphs. These results show that T. cruzi affected the excretion/defecation pattern of T. infestans in a way that would increase the probability of contact between infective feces and the mammalian host.


Assuntos
Interações Hospedeiro-Parasita , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/transmissão , Defecação , Comportamento Alimentar , Triatoma/fisiologia
12.
Parasitol Res ; 119(10): 3305-3313, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32651636

RESUMO

The genetic structure of natural populations offers insight into the complexities of their dynamics, information that can be relevant to vector control strategies. Microsatellites are useful neutral markers to investigate the genetic structure and gene flow in Triatoma infestans, one of the main vectors of Chagas disease in South America. Recently, a heterogeneous pyrethroid-resistant hotspot was found in the Argentine Gran Chaco, characterized by the highest levels of deltamethrin resistance found at the present time. We applied population genetics analyses to microsatellite and village data and search for associations between the genetic variability and the heterogeneous toxicological pattern previously found. We genotyped 10 microsatellite loci in 67 T. infestans from 6 villages with no, low, and high pyrethroid resistance. The most genetically diverse populations were those susceptible or with low values of resistance. In contrast, high-resistance populations had lower herozygosity and some monomorphic loci. A negative association was found between variability and resistant ratios. Global and pairwise FSTs indicated significant differentiation between populations. The only susceptible population was discriminated in all the performed studies. Low-resistance populations were also differentiated by a discriminant analysis of principal components (DAPC) and were composed mostly by the same two genetic clusters according to STRUCTURE Bayesian algorithm. Individuals from the high-resistance populations were overlapped in the DAPC and shared significant proportions of a genetic cluster. These observations suggest that the resistant populations might have a common origin, although more genetic markers and samples are required to test this hypothesis more rigorously.


Assuntos
Insetos Vetores/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Triatoma/genética , Animais , Argentina/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Variação Genética , Repetições de Microssatélites/genética
13.
Parasitol Res ; 119(9): 2775-2781, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32737590

RESUMO

Triatoma platensis is occasionally found coexisting with Triatoma infestans in chicken coops in Argentina. Some authors have reported the presence of hybrid specimens of both species in chicken coops and other peridomestic habitats. Given the coexistence of T. infestans with T. platensis and the possibility of generating fertile hybrids, it is important to evaluate the vectorial competence of these hybrids. The objective of this study was to record the dynamics of feeding-defecation behavior in fifth-stage nymphs and adults of hybrids between both species and to compare it with T. platensis and T. infestans. Three experimental groups were formed separated by stage and sex: Hybrid group, T. infestans group, and T. platensis group. During feeding, the following variables were recorded for each group: (i) blood meal size, (ii) feeding time, (iii) number of defecations during feeding, and (iv) number of defecations at 10 and 30 min after feeding. The results indicate that adults and fifth-instar nymphs of hybrids have a feeding and defecation behavior similar to T. infestans: they achieve feeding in a short time and first defecation occurs during or just after feeding. Nevertheless, hybrid's ingestion of blood occurs at higher velocity and they require higher blood intake to provoke early defecations. Considering the blood ingestion velocity, the amount of blood ingested, and the short time required for the production of the first defecation, the results of this study suggest that hybrid can be a competent Trypanosoma cruzi vector.


Assuntos
Defecação/fisiologia , Comportamento Alimentar/fisiologia , Insetos Vetores/fisiologia , Triatoma/fisiologia , Animais , Argentina , Doença de Chagas/transmissão , Galinhas/parasitologia , Ecossistema , Fezes/parasitologia , Feminino , Masculino , Ninfa/crescimento & desenvolvimento , Trypanosoma cruzi/crescimento & desenvolvimento
14.
Med Vet Entomol ; 32(3): 311-322, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29430671

RESUMO

Pyrethroid resistance has been detected in Triatoma infestans (Klug) (Hemiptera: Reduviidae) specimens from different areas of Argentina and Bolivia. Genes conferring resistance can have a pleiotropic effect with epidemiological and evolutionary consequences. This research studied excretion/defecation patterns in deltamethrin-resistant T. infestans in order to elucidate its biological performance, adaptive consequences and role in the transmission of Chagas' disease. One deltamethrin-susceptible strain and two deltamethrin-resistant strains were used. Fifth-instar nymphs were fed ad libitum and their defecations recorded during and after the first or second feeding in the stadium. Resistant insects began to defecate later, defecated less, showed a lower proportion of defecating individuals and lower defecation indices compared with susceptible insects during the first hour after feeding. The number of bloodmeals in the stadium did not affect the main variables determining the pattern of defecation. The present study suggests that alterations in the excretion/defecation pattern in resistant insects entail an adaptive cost and, considering only this pattern, determine a lower capacity for transmission of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) compared with susceptible insects.


Assuntos
Defecação/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Triatoma/efeitos dos fármacos , Animais , Ninfa/efeitos dos fármacos , Ninfa/fisiologia , Triatoma/crescimento & desenvolvimento , Triatoma/fisiologia
15.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695139

RESUMO

Chagas disease or American trypanosomiasis affects six to seven million people worldwide, mostly in Latin America. This disease is transmitted by hematophagous insects known as "kissing bugs" (Hemiptera, Triatominae), with Triatoma infestans and Rhodnius prolixus being the two most important vector species. Despite the fact that both species present the same diploid chromosome number (2n = 22), they have remarkable differences in their total DNA content, chromosome structure and genome organization. Variations in the DNA genome size are expected to be due to differences in the amount of repetitive DNA sequences. The T. infestans genome-wide analysis revealed the existence of 42 satellite DNA families. BLAST searches of these sequences against the R. prolixus genome assembly revealed that only four of these satellite DNA families are shared between both species, suggesting a great differentiation between the Triatoma and Rhodnius genomes. Fluorescence in situ hybridization (FISH) location of these repetitive DNAs in both species showed that they are dispersed on the euchromatic regions of all autosomes and the X chromosome. Regarding the Y chromosome, these common satellite DNAs are absent in T. infestans but they are present in the R. prolixus Y chromosome. These results support a different origin and/or evolution in the Y chromosome of both species.


Assuntos
Insetos Vetores/genética , Sequências Repetitivas de Ácido Nucleico , Rhodnius/genética , Triatoma/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Bandeamento Cromossômico , DNA Satélite , Evolução Molecular , Genoma de Inseto , Genômica/métodos , Hibridização in Situ Fluorescente , Insetos Vetores/parasitologia , Rhodnius/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi
16.
Genetica ; 145(1): 105-114, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28120213

RESUMO

In spite of long-term efforts to eliminate Triatoma infestans (Klug 1834) from Brazil, residual foci still persist in the states of Bahia and Rio Grande do Sul. Data on the genetic variability and structuring of these populations are however lacking. Using nine microsatellite loci, we characterized one residual T. infestans population from Bahia and four from Rio Grande do Sul, and compared them with bugs originally from an older focus in São Paulo; 224 bugs were genotyped. The number of alleles per locus ranged from 5 to 11. Observed and expected heterozygosities per locus ranged, respectively, from 0 to 0.786 and from 0 to 0.764. Significant departures from Hardy-Weinberg equilibrium, mainly due to heterozygote deficits, were detected in all loci and in most populations. Global indices estimated by AMOVA were: Fis was 0.37; Fst was 0.28; and Fit was 0.55; overall indices with p = 0.00 indicated substantial differentiation. Inter-population Fst ranged from 0.118 to 0.562, suggesting strong genetic structuring and little to no gene flow among populations. Intra-population Fis ranged from 0.301 to 0.307. Inbreeding was apparent in all populations except that from Bahia-which might be either linked by gene flow to nearby unsampled populations or part of a relatively large local population. The overall pattern of strong genetic structuring among pyrethroid-susceptible residual T. infestans populations suggests that their persistence is probably due to operational control failures. Detection and elimination of such residual foci is technically feasible and must become a public health priority in Brazil.


Assuntos
Insetos Vetores/genética , Repetições de Microssatélites , Triatoma/genética , Alelos , Animais , Brasil , Variação Genética , Genótipo , Geografia
17.
Med Vet Entomol ; 31(2): 132-139, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27862092

RESUMO

This study, based on the rat model, was designed to explore the anti-feeding and insecticidal efficacy of a topical ectoparasiticide, dinotefuran-permethrin-pyriproxyfen (DPP), against Triatoma infestans (Hemiptera: Reduviidae), a vector of Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae), for which dogs are domestic reservoir hosts. Twenty rats were divided into two equal groups: untreated and treated. Each rat was exposed under sedation to 16 T. infestans of mixed life stages for 1 h on days 1, 7, 14, 21 and 28 post-treatment. The anti-feeding and insecticidal effects of DPP were estimated after 1 h of exposure. Insecticidal efficacy was also assessed after incubation of the insects for 24 h post-exposure. Anti-feeding efficacy was 96.7, 84.7, 80.5, 81.5 and 42.6% on days 1, 7, 14, 21 and 28, respectively. Insecticidal efficacy evaluated at 1 and 24 h after exposure on days 1, 7, 14, 21 and 28 was 100, 91.2, 82.5, 80.0 and 29.1, and 100, 100, 100, 96.0 and 49.9%, respectively. This study demonstrates that a single administration of DPP spot-on treatment at a dose equivalent to the minimal recommended dose in rats has a powerful effect against T. infestans starting from day 1 that lasts for at least 3 weeks.


Assuntos
Ectoparasitoses/veterinária , Guanidinas , Controle de Insetos , Inseticidas , Nitrocompostos , Permetrina , Piridinas , Triatoma , Animais , Modelos Animais de Doenças , Ectoparasitoses/prevenção & controle , Feminino , Masculino , Neonicotinoides , Ninfa/crescimento & desenvolvimento , Ratos , Triatoma/crescimento & desenvolvimento
18.
Med Vet Entomol ; 31(4): 414-426, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28766724

RESUMO

The domiciliary presence of Triatoma infestans (Klug) (Hemiptera: Reduviidae) after control interventions was reported in recent years. Toxicological studies showed high levels of resistance to pyrethroids suggesting resistance as one of the main causes of deficient control. The aim of the present study was to develop a protocol to test resistance to deltamethrin in T. infestans collected from the field by discriminate concentration. To evaluate field insects, the effect of age (early vs. later) and nutritional state (starved vs. fed) on the deltamethrin susceptibility of each developmental stage was studied. Topical and insecticide impregnated paper bioassays were used. Using the impregnated paper, the susceptibility to deltamethrin was not affected by the age of the stadium and the nutritional states, and varied with the post-exposure time and with the different developmental stages. A discriminant concentration of deltamethrin (0.36% w/v) impregnated in filter paper was established for all developmental stages. Finally, the methodology and the discriminant concentration were evaluated in the laboratory showing high sensitivity in the discrimination of resistance. The present study developed a methodology of exposure to insecticide impregnated papers and proposes a protocol to test T. infestans in field populations with the aim to detect early evolution of resistance to deltamethrin.


Assuntos
Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Triatoma/efeitos dos fármacos , Fatores Etários , Animais , Feminino , Masculino , Ninfa/efeitos dos fármacos , Ninfa/crescimento & desenvolvimento , Triatoma/crescimento & desenvolvimento
19.
Med Vet Entomol ; 31(3): 252-262, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145576

RESUMO

Triatomines (Hemiptera: Reduviidae: Triatominae) are nocturnal blood-sucking insects. During daylight hours they remain in an akinetic state inside their shelters, whereas at dusk they become active and move outside. When they are outside their shelters during the photophase, triatomines are vulnerable to diurnal predators and the period just before dawn is critical to their survival. This work analyses the existence of competitive interactions involved in the occupancy of shelters by triatomines. Behavioural assays were performed in which nymphs of different stages, nutritional status or species were released in an experimental arena containing a space-limited artificial shelter. The proportions of individuals occupying the shelter during the photophase were quantified to estimate the competitive abilities of each stage and species. Intraspecific comparisons showed higher levels of shelter occupancy for fourth over fifth instars and fed over unfed nymphs of Triatoma infestans. Interspecific comparisons showed higher rates of shelter occupancy for Triatoma sordida in comparison with T. infestans, and for T. infestans over Rhodnius prolixus. Arrival order was also relevant to determining shelter occupancy levels: early arrival was advantageous in comparison with later arrival. The study of intra- and interspecific competitive interactions for shelter occupancy provides relevant information about colonization and recolonization processes in the natural environments of triatomines.


Assuntos
Rhodnius/fisiologia , Triatoma/fisiologia , Animais , Comportamento Competitivo , Comportamento Alimentar , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Rhodnius/crescimento & desenvolvimento , Triatoma/crescimento & desenvolvimento
20.
Biochim Biophys Acta ; 1850(2): 255-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445710

RESUMO

BACKGROUND: Triatoma infestans is the main vector of Chagas'disease in Southern Cone countries. In triatomines, symptoms suggesting neurotoxicity were observed after treatment with Jaburetox (Jbtx), the entomotoxic peptide obtained from jackbean urease. Here, we study its effect in the central nervous system (CNS) of this species. METHODS: Immunohistochemistry, Western blots, immunoprecipitation, two-dimensional electrophoresis, tandem mass spectrometry and enzymatic assays were performed. RESULTS: Anti-Jbtx antibody labeled somata of the antennal lobe only in Jbtx-treated insects. Western blot assays of nervous tissue using the same antibody reacted with a 61kDa protein band only in peptide-injected insects. Combination of immunoprecipitation, two-dimensional electrophoresis and tandem mass spectrometry identified UDP-N-acetylglucosamine pyrophosphorylase (UDP-GlcNAcP) as a molecular target for Jbtx. The activity of UDP-GlcNAcP increased significantly in the CNS of Jbtx-treated insects. The effect of Jbtx on the activity of nitric oxide synthase (NOS) and NO production was investigated as NO is a recognized messenger molecule in the CNS of T. infestans. NOS activity and NO levels decreased significantly in CNS homogenates of Jbtx-treated insects. CONCLUSIONS: UDP-GlcNAcP is a molecular target of Jbtx. Jbtx impaired the activity of T. infestans nitrergic system, which may be related with early behavioral effects. GENERAL SIGNIFICANCE: We report that the CNS of Triatoma infestans is a target for the entomotoxic peptide and propose that a specific area of the brain is involved. Besides potentially providing tools for control strategies of Chagas' disease vectors our data may be relevant in various fields of research as insect physiology, neurobiology and protein function.


Assuntos
Sistema Nervoso Central/enzimologia , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Triatoma/enzimologia , Urease/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nucleotidiltransferases/metabolismo , Peptídeos/química , Proteínas de Plantas/química , Urease/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa