Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
RNA ; 21(1): 61-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25404562

RESUMO

Post-transcriptional tRNA modifications are critical for efficient and accurate translation, and have multiple different roles. Lack of modifications often leads to different biological consequences in different organisms, and in humans is frequently associated with neurological disorders. We investigate here the conservation of a unique circuitry for anticodon loop modification required for healthy growth in the yeast Saccharomyces cerevisiae. S. cerevisiae Trm7 interacts separately with Trm732 and Trm734 to 2'-O-methylate three substrate tRNAs at anticodon loop residues C32 and N34, and these modifications are required for efficient wybutosine formation at m(1)G37 of tRNA(Phe). Moreover, trm7Δ and trm732Δ trm734Δ mutants grow poorly due to lack of functional tRNA(Phe). It is unknown if this circuitry is conserved and important for tRNA(Phe) modification in other eukaryotes, but a likely human TRM7 ortholog is implicated in nonsyndromic X-linked intellectual disability. We find that the distantly related yeast Schizosaccharomyces pombe has retained this circuitry for anticodon loop modification, that S. pombe trm7Δ and trm734Δ mutants have more severe phenotypes than the S. cerevisiae mutants, and that tRNA(Phe) is the major biological target. Furthermore, we provide evidence that Trm7 and Trm732 function is widely conserved throughout eukaryotes, since human FTSJ1 and THADA, respectively, complement growth defects of S. cerevisiae trm7Δ and trm732Δ trm734Δ mutants by modifying C32 of tRNA(Phe), each working with the corresponding S. cerevisiae partner protein. These results suggest widespread importance of 2'-O-methylation of the tRNA anticodon loop, implicate tRNA(Phe) as the crucial substrate, and suggest that this modification circuitry is important for human neuronal development.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência de Fenilalanina/genética , Sequência de Aminoácidos , Animais , Anticódon , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA de Transferência de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
2.
Hum Mutat ; 36(12): 1176-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26310293

RESUMO

tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .


Assuntos
Anticódon , Deficiência Intelectual Ligada ao Cromossomo X/genética , Metiltransferases/genética , Mutação , Proteínas Nucleares/genética , RNA de Transferência/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Códon , Feminino , Expressão Gênica , Genótipo , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Metilação , Metiltransferases/química , Modelos Moleculares , Proteínas Nucleares/química , Conformação de Ácido Nucleico , Linhagem , Conformação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
RNA Biol ; 11(12): 1608-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25625329

RESUMO

tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.


Assuntos
Nucleosídeo Desaminases/metabolismo , Subunidades Proteicas/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/metabolismo , Sítios de Ligação , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleosídeo Desaminases/genética , Ligação Proteica , Subunidades Proteicas/genética , RNA de Transferência/química , RNA de Transferência/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , tRNA Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa