Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Clin Chem Lab Med ; 62(2): 280-287, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37614121

RESUMO

OBJECTIVES: Recently, Abbott Diagnostics marketed a new generation of Alinity enzyme assays, introducing a multiparametric calibrator [Consolidated Chemistry Calibrator (ConCC)] in place of or in addition to factor-based calibrations. For alkaline phosphatase (ALP), both calibration options are offered, i.e., with ConCC (ALP2) and with an experimental calibration factor (ALP2F). Both options are declared traceable to the 2011 IFCC reference measurement procedure (RMP). Before to replace the old generation (ALP1) with the new one, we decided to validate the trueness of ALP2/ALP2F. METHODS: Three approaches were employed: (a) preliminary comparison on 48 native frozen serum samples with ALP1, of which traceability to RMP was previously successfully verified; (b) examination of three banked serum pools (BSP) with values assigned by RMP; (c) direct comparison with RMP on a set of 24 fresh serum samples. Bias estimation and regression studies were performed, and the standard measurement uncertainty associated with ALP measurements on clinical samples (uresult) was estimated and compared with established analytical performance specifications (APS). ConCC commutability was also assessed. RESULTS: A positive proportional bias was found with both ALP2 and ALP2F when compared to ALP1 and RMP. This positive bias was confirmed on BSP: in average, +13.1 % for ALP2 and +10.0 % for ALP2F, respectively. uresult were 13.28 % for ALP2 and 10.04 % for ALP2F, both not fulfilling the minimum APS of 4.0 %. Furthermore, ConCC was not commutable with clinical samples. CONCLUSIONS: Our results unearth problems in the correct implementation of traceability of Alinity ALP2/ALP2F, with the risk for the new assay to be unfit for clinical purposes.


Assuntos
Fosfatase Alcalina , Ensaios Enzimáticos Clínicos , Humanos , Soro , Calibragem , Padrões de Referência
2.
Anal Bioanal Chem ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382675

RESUMO

Digoxin, a cardiac glycoside, is widely used in the treatment of cardiovascular diseases. Due to its narrow therapeutic range, precise monitoring of its blood concentration is essential. A reference measurement procedure (RMP) is pivotal for ensuring result accuracy and comparability. The RMP for serum digoxin by ID-LC-MS/MS was optimized with sample pre-treatment and detection processes, and the bracketing calibration method was used, which facilitates more accurate measurement, especially for extreme concentrations. The performance of this optimized RMP was thoroughly evaluated. The limit of detection (LoD) was 0.05 ng/mL (0.06 nmol/L) and the lowest limit of quantification (LLoQ) was 0.10 ng/mL (0.13 nmol/L). The intra- and inter-assay imprecisions were 2.24%, 2.51%, 1.40% and 1.72%, 1.65%, 0.97% at 0.5, 2.0, 5.0 ng/mL, respectively. Recoveries were 99.63 to 101.42% and the linear response ranged from 0.1 to 10.0 ng/mL. The relative bias was 0.41% and 2.00% of our results compared with the median of all participating reference laboratories for IFCC-RELA (External Quality Assessment Scheme for Reference Laboratories in Laboratory Medicine) 2023A and 2023B. The uncertainty, calibration and measurement capability (CMC) of this method were also evaluated. The optimized RMP was applied in the Trueness Verification Plan of Southern China, which indicates significant differences among clinical systems, highlighting the need for standardization efforts. In addition, two commonly used clinical systems which employed immunoassay methods were compared with this optimized RMP, and 26 individual serum samples were analyzed. The good correlations indicate the feasibility of standardization for serum digoxin. The optimized RMP serves as an accurate reference baseline for routine methods, aiming to enhance the accuracy and precision of measurements in clinical laboratories.

3.
Anal Bioanal Chem ; 416(22): 4897-4906, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38953919

RESUMO

A candidate reference measurement procedure (RMP) for serum theophylline via isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. With a single-step precipitation pretreatment and a 6-min gradient elution, the method achieved baseline separation of theophylline and its analogs on a C18-packed column. A bracketing calibration method was used to ensure repeatable signal intensity and high measurement precision. The intra-assay and inter-assay imprecisions were 1.06%, 0.84%, 0.72% and 0.47%, 0.41%, 0.25% at concentrations of 4.22 µg/mL (23.40 µmol/L), 8.45 µg/mL (46.90 µmol/L), and 15.21 µg/mL (84.43 µmol/L), respectively. Recoveries ranged from 99.35 to 102.34%. The limit of detection (LoD) was 2 ng/mL, and the lowest limit of quantification (LLoQ) was 5 ng/mL. The linearity range extended from 0.47 to 60 µg/mL (2.61-333.04 µmol/L). No ion suppression and carry-over (< 0.68%) were observed. The relative bias for this candidate RMP that participated in 2023 External Quality Control for Reference Laboratories (RELA) conducted by the International Federation of Clinical Chemistry (IFCC) was within a range of 0.17 to 0.93%. Furthermore, two clinical immunoassay systems were compared with this candidate RMP, demonstrating good correlations. The results of the Trueness Verification Plan indicate significant differences among routine systems, highlighting the need for standardization efforts. The developed candidate RMP for serum theophylline serves as a precise reference baseline for standardizing clinical systems and assigning values to reference materials.


Assuntos
Limite de Detecção , Espectrometria de Massas em Tandem , Teofilina , Teofilina/sangue , Espectrometria de Massas em Tandem/métodos , Humanos , Calibragem , Cromatografia Líquida/métodos , Padrões de Referência , Técnicas de Diluição do Indicador , Reprodutibilidade dos Testes
4.
Clin Oral Implants Res ; 35(3): 294-304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112164

RESUMO

OBJECTIVES: To evaluate the impact of guide stabilizers and their application sequences on implant placement accuracy of guided implant surgery in multiple teeth loss at free end. MATERIALS AND METHODS: In this study, 96 implants were placed in the regions of #34, #36, and #37 of 32 identical mandibular models. The influence of using guide stabilizers or not (group A and group B) and various guide stabilizers application sequences (group B: #34 → #36 → #37; group C: #36 → #34 → #37; group D: #37 → #34 → #36) on implant placement trueness and precision was investigated. Data were analyzed using T-tests and one-way ANOVA. RESULTS: Group B showed significant benefits in enhancing implant placement precision. Compared to group A, it resulted in reducing 3D-deviation at crest and 2D deviation in vestibular-oral direction at both crest and apex. Furthermore, group D demonstrated greater improvement in global implant placement precision by reducing 2D deviation in mesial-distal direction at both crest and apex. Among the three different stabilizer application sequences, group D exhibited the highest level of implant placement precision. CONCLUSIONS: In cases of missing teeth at distal free end, the use of guide stabilizers and their application sequences does not have a significant impact on implant placement trueness. However, they do improve implant placement precision compared to methods that do not utilize guide stabilizers. Specifically, applying a guide stabilizer first at the furthest implant site to change teeth loss classification from free end to edentulous space with posterior support is the most reliable sequence.


Assuntos
Implantes Dentários , Boca Edêntula , Cirurgia Assistida por Computador , Perda de Dente , Humanos , Implantação Dentária Endóssea/métodos , Desenho Assistido por Computador , Imageamento Tridimensional , Tomografia Computadorizada de Feixe Cônico
5.
Artigo em Inglês | MEDLINE | ID: mdl-39373257

RESUMO

OBJECTIVES: This study aims to examine differences in trueness and precision between surgical guides with (S) and without sleeves (SL). A secondary aim was to assess the impact of the sleeve-to-bone distance. MATERIALS AND METHODS: Mandible replicas (n = 120) were printed from an STL file obtained from a clinical CBCT. The mandibles were divided into sleeved (S, n = 60) and sleeveless (SL, n = 60) groups, each further divided into three categories (n = 20 each) with different heights from the guide to the implant platform: 2 mm (H2), 4 mm (H4), or 6 mm (H6). Digital planning and surgical guide design were done for a 4.1 × 10 mm implant for site #30. Post-op positions were captured using a scan body and lab scanner. Angular deviation was the primary outcome, with 3D and 2D deviations as secondary parameters. Statistical analysis included two-sample t-tests, and one-way and two-way ANOVA. RESULTS: Group S (2.41 ± 1.41°) had significantly greater angular deviation than Group SL (1.65 ± 0.93°; p = 0.0001). Angular deviation increased with sleeve-to-bone distance. H2 deviations were 1.48 ± 0.80° (S) vs. 1.02 ± 0.45° (SL; p < 0.05), H4: 2.36 ± 1.04° (S) vs. 1.48 ± 0.79° (SL; p < 0.05), H6: 3.37 ± 0.67° (S) vs. 2.46 ± 0.89° (SL; p < 0.05). 3D deviation at the implant platform was 0.36 ± 0.17 mm (S) vs. 0.30 ± 0.15 mm (SL; p < 0.05) and at the apex 0.74 ± 0.34 mm (S) vs. 0.53 ± 0.31 mm (SL; p < 0.01). Group SL at H2 had the smallest inter-implant distance (0.53 ± 0.37°), while Group S at H4 had the largest (1.20 ± 0.84°; p < 0.05). CONCLUSIONS: Sleeveless guides are more accurate than sleeved guides, and angular deviation is influenced by the distance from the guide to the implant platform.

6.
Orthod Craniofac Res ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169632

RESUMO

OBJECTIVES: This study investigated the effect of additive manufacturing (AM) methods on the slot height dimensions and accuracy of 3D-printed orthodontic brackets. METHODS: A 3D model of a standard Mclaughlin Bennett Trevisi bracket was used as a reference to print the ceramic bracket in a 90° orientation using two representative AM methods: digital light processing (DLP) and material jetting (MJ). The dimensional accuracy and slot heights were determined using a scanning electron microscope and an optical scanner. Also, all specimens were analysed using the Geomagic Control X 3D inspection software. The root mean square (RMS) values were used for trueness and precision assessment. Statistical analyses were performed using an independent sample t-test. RESULTS: Slot height dimensions, trueness RMS, and precision RMS were statistically affected by different AM methods (p < .01). There was a significant difference between the different printing methods, with DLP meeting the tolerance requirements (mean slot height = 0.557 ± 0.018 mm) and MJ being slightly below them (mean slot height = 0.544 ± 0.021 mm). However, MJ significantly outperformed DLP in terms of accuracy. Among the two printing methods, MJ was associated with higher trueness (RMS = 0.025 ± 0.004 mm) and precision (RMS = 0.038 ± 0.005 mm). CONCLUSIONS: Both tested AM methods yielded clinically acceptable outcomes, with the RMS range set to ±100 µm and the slot height tolerance established at 0.549-0.569 mm. The MJ technology achieved the highest accuracy.

7.
J Esthet Restor Dent ; 36(8): 1179-1198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38534043

RESUMO

AIM: The aim of this study was to compare the accuracy of full-arch conventional implant impressions using two different materials (A-silicone and polyether) to full-arch digital implant impressions produced from two intraoral scanning devices. MATERIALS AND METHODS: A master model was fabricated representing an edentulous mandible with four implants with internal connection placed at the sites of canines and first molars. The anterior implants were parallel to the residual ridge, while the two posterior implants had an angulation of 15° to the distal and 15° to the lingual respectively. The conventional technique was performed with open-tray of non-splinted impression copings. Two different impression materials were used, A-silicone and polyether at monophase medium body consistencies. The digital impressions were obtained with the use of two different intraoral scanners, after the connection of scan bodies. A total of 10 impressions were produced for each of the four experimental groups. The conventional models as well as the master model were digitized using a high-resolution laboratory scanner. The STL files of the models and of the intraoral impressions were imported in a powerful superimposition software, for the conduction of measurements in pairs of files. The software calculated the 3D deviations, as well as the linear and angular displacements among scan bodies at the digital files. For "trueness" measurements every STL file of each experimental group was superimposed to the digital master model, while for "precision" measurements all STL files of each experimental group were superimposed to each other. RESULTS AND CONCLUSIONS: The accuracy of full arch mandibular implant impressions was influenced both by the impression technique used (conventional vs. digital) and the impression material used (A-silicone vs. polyether) or the intraoral scanner used (Trios vs. Heron). In terms of "trueness," A-silicone showed the highest impression accuracy with the lowest deviation values, followed by polyether and Trios, but the differences between the three groups were in the majority not statistically significant. Heron showed statistically lower accuracy results in all measurements compared to the other groups. In terms of "precision", conventional impressions with the use of A-Silicone or polyether were statistically significantly superior to digital impressions with either scanner. A-Silicone and polyether showed no statistically significant difference between them.


Assuntos
Técnica de Moldagem Odontológica , Materiais para Moldagem Odontológica , Humanos , Técnicas In Vitro , Elastômeros , Desenho Assistido por Computador , Modelos Dentários
8.
J Esthet Restor Dent ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248580

RESUMO

OBJECTIVE: This systematic review and meta-analysis compared the accuracy of intraoral scanners and spectrophotometers in determining tooth shade. MATERIALS AND METHODS: An electronic search of five databases (PubMed, Scopus, Embase, Web of Science, CENTRAL) was conducted on October 19, 2023. A total of 163 studies were identified from the databases, of which 23 articles were eligible for inclusion. In vivo and in vitro quasi-experimental studies were included. After data extraction, a quantitative analysis was performed to determine the accuracy of the intraoral scanner in subgroups using four outcomes: trueness and precision with different measurement locations. A random-effects model was used to pool effect sizes. The pooled proportion with a 95% confidence interval (CI) was used for the effect size measure. RESULTS: Eleven articles were included in the meta-analysis. Trueness with the intraoral scanner was between 0.28 (CI: 0.09-0.60) and 0.38 (CI: 0.24-0.53). Repeatability was between 0.81 (CI: 0.64-0.91) and 0.85 (CI: 0.74-0.92). Trueness showed low, and precision had moderate certainty of evidence. CONCLUSION: The trueness of shade matching with intraoral scanners is low compared to spectrophotometers, although the precision is considered high and is similar to spectrophotometers. CLINICAL SIGNIFICANCE: Shade determination with intraoral scanners is not recommended.

9.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731566

RESUMO

Size exclusion chromatography with total organic carbon detection (HPSEC-TOC) is a widely employed technique for characterizing aquatic natural organic matter (NOM) into high, medium, and low molecular weight fractions. This study validates the suitability of HPSEC-TOC for a simplified yet efficient routine analysis of freshwater and its application within drinking water treatment plants. The investigation highlights key procedural considerations for optimal results and shows the importance of sample preservation by refrigeration with a maximum storage duration of two weeks. Prior to analysis, the removal of inorganic carbon is essential, which is achieved without altering the NOM composition through sample acidification to pH 6 and subsequent N2-purging. The chromatographic separation employs a preparative TSK HW-50S column to achieve a limit of detection of 19.0 µgC dm-3 with an injection volume of 1350 mm-3. The method demonstrates linearity up to 10,000 µgC dm-3. Precision, trueness and recovery assessments are conducted using certified reference materials, model compounds, and real water samples. The relative measurement uncertainty in routine analysis ranges from 3.22% to 5.17%, while the measurement uncertainty on the bias is 8.73%. Overall, the HPSEC-TOC represents a reliable tool for NOM fractions analysis in both treated and untreated ground and surface water.

10.
Int J Paediatr Dent ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363425

RESUMO

BACKGROUND: Various scanning methods aim to reduce intraoral scanner errors, yet no specific approach targets paediatric patients. AIM: Evaluate continuous (C) and noncontinuous (NC) scanning patterns' impact on the trueness and duration of paediatric digital impressions. DESIGN: A standard pedodontic typodont model was scanned with a Trios 4 Move+ IOS using four scanning strategies. C1 and C2 followed continuous scanning from the right molars, with different directions. NC1 scanned noncontinuously from the right molar, with breaks every four teeth. NC2 began at the right primary incisor, with breaks after every three teeth. Each scan, performed five times by one researcher, was timed. Industrial scanning provided reference data. Deviations were analyzed using the MIXED procedure. RESULTS: NC1 had higher deviations in the lower jaw, whereas C1 and NC1 showed higher deviations in the upper jaw (p < .001). C1 had significantly higher deviations in the upper jaw than the lower jaw (p = .041). NC2 had the longest scanning time in both upper and lower jaws (p = .002). CONCLUSION: Paediatric digital impressions benefit from starting at the anterior and incorporating breaks, although this increases scanning time.

11.
BMC Oral Health ; 24(1): 1033, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227885

RESUMO

BACKGROUND: The accuracy of intraoral scanning is critical for computer-aided design/computer-aided manufacturing workflows in dentistry. However, data regarding the scanning accuracy of various adjacent restorative materials and intraoral scanners are lacking. This in vitro study aimed to evaluate the effect of adjacent restorative material type and CEREC's intraoral scanners on the accuracy of intraoral digital impressions for inlay cavities. METHODS: The artificial tooth was prepared with an occlusal cavity depth of 2 mm, a proximal box width at the gingival floor of 1.5 mm, and an equi-gingival margin extended disto-occlusally at the transition line angle on both the lingual and buccal sides for an inlay restoration. The adjacent teeth were veneered with crowns made of gold and zirconia, and an artificial tooth (resin) was utilized as the control group. The inlay cavity and adjacent teeth (Gold, Zirconia, and resin) were scanned 10 times using Chairside Economical Restoration of Esthetic Ceramics (CEREC) Primescan (PS), Omnicam (OC), and Bluecam (BC). A reference scan was obtained using a laboratory scanner (3-shape E3). Scanning was performed according to the manufacturer's instructions, including powder application for the BC group. Standard tesselation language files were analyzed using a three-dimensional analysis software program. Experimental data were analyzed using a two-way analysis of variance and the Tukey's post-hoc comparison test. RESULTS: The restorative materials of the adjacent teeth significantly affected the accuracy of the intraoral digital impressions (p < .05). The zirconia group exhibited the highest trueness deviation, followed by the resin and gold groups, with each demonstrating a statistically significant difference (p < .05). The resin group demonstrated the highest maximum positive deviation and deviation in precision. Gold exhibited the lowest average deviation value for trueness compared with those of the other adjacent restorative materials. Intraoral scanner type significantly influenced the trueness and precision of the scan data (p < .05). The average deviation of trueness according to the intraoral scanner type increased in the following order: BC > PS > OC. The average deviation in precision increased in the following order: PS>OC>BC (p < .05). CONCLUSION: The restorative materials of the adjacent tooth and the type of intraoral scanner affect the accuracy of the intraoral digital impression. The trueness of the digital images of the BC group, obtained by spraying the powder, was comparable to that of the PS group. Among the adjacent restorative materials, zirconia exhibited the lowest trueness. In contrast, PS demonstrated the highest precision among the intraoral scanners, while resin displayed the lowest precision among the adjacent restorative materials.


Assuntos
Desenho Assistido por Computador , Restaurações Intracoronárias , Zircônio , Humanos , Técnica de Moldagem Odontológica , Técnicas In Vitro , Materiais Dentários , Coroas , Cerâmica , Planejamento de Prótese Dentária/métodos , Restauração Dentária Permanente/métodos
12.
BMC Oral Health ; 24(1): 671, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851680

RESUMO

The latest generation of intraoral scanners can record the prosthetic field with relative ease, high accuracy and comfort for the patient, and have enabled fully digital protocols for designing and manufacturing complete dentures. The present study aims to examine the intaglio surface trueness of 3D printed maxillary dentures produced by fully digital workflow in comparison with dentures produced by analogue clinical and laboratory prosthetic workflow. The edentulous maxillary arch of 15 patients was scanned with an intraoral scanner as well as the intaglio of the delivered conventional denture. The scan of the edentulous arch was imported into a dental design software to produce the denture base which was then 3D printed. The intaglio surface of the finished 3D printed denture bases was digitized and used to assess the trueness of the printed denture bases compared to the intaglio surface of the conventional dentures as well as performing a trueness comparison in relation to the scanned edentulous arches. The dataset (n = 30) was subjected to Kruskal-Wallis test analysis, the significance level being established at α = 0.05. The results of the study showed that the printed group displayed better trueness values with a median of 176.9 µm while the analogue group showed a median of 342 µm. Employing a fully digital workflow to produce 3D-printed denture bases yields a consistent and precise manufacturing method when accounting for the intaglio surface of the denture.


Assuntos
Bases de Dentadura , Planejamento de Dentadura , Impressão Tridimensional , Fluxo de Trabalho , Humanos , Planejamento de Dentadura/métodos , Desenho Assistido por Computador , Feminino , Arcada Edêntula , Prótese Total Superior
13.
BMC Oral Health ; 24(1): 983, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180008

RESUMO

BACKGROUND: While many denture base materials are currently available on the market, little data exists regarding their dimensional stability after exposure to the oral environment. This study aimed to evaluate the effect of thermocycling on the trueness and precision of milled, 3-dimensional (3D)-printed, and conventional digitally fabricated complete denture bases (CDBs). METHODS: A completely edentulous maxillary stone model was scanned to generate a standard tessellation language (STL) file; this was imported into metal-milling-machine software (Redon Hybrid CAD-CAM metal milling machine, Redon, Turkey) to produce a metal model for fabricating 30 CDBs. These were divided into three groups (n = 10 in each) according to the construction technique: group 1, CAD-CAM milled CDBs; group 2, 3D-printed CDBs; and group 3, conventional compression molded CDBs. All CDBs were scanned after fabrication and evaluated before and after thermocycling using superimposition. The data were analyzed using a one-way ANOVA, Tukey's post hoc test, and a paired t-test. RESULTS: The level of trueness between the CAD-CAM milled, 3D-printed, and compression molded CDBs showed significant differences before and after thermocycling (P < 0.05). Group 1 showed the highest degree of trueness before and after thermocycling, group 3 exhibited a higher degree of trueness than group 2 before thermocycling, and group 2 had a higher degree of trueness than group 3 after thermocycling. There was a significant difference in the precision for each CDB type before and after thermocycling (P < 0.05). CONCLUSION: The trueness of the CAD-CAM milling system in complete denture (CD) fabrication is superior to that of the 3D printing and conventional compression molding systems before and after thermocycling. Thermocycling had a significant effect on the precision of all CDB types. The compression molding system in CD construction is the most negatively affected via thermocycling with regard to the measures of trueness and precision. CLINICAL TRIAL NUMBER: Not applicable, no human participants were involved.


Assuntos
Desenho Assistido por Computador , Bases de Dentadura , Planejamento de Dentadura , Impressão Tridimensional , Humanos , Planejamento de Dentadura/métodos , Prótese Total , Modelos Dentários , Temperatura
14.
J Prosthodont ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318107

RESUMO

PURPOSE: The purpose of this study was to assess the precision and trueness of three jaw motion tracking systems, the KaVo ARCUSdigma system, SDiMatriX system, and Modjaw system, in recording mandibular movements based on optical and ultrasonic principles. MATERIALS AND METHODS: Twenty-five healthy subjects were selected for the present study to measure protrosive movement and left and right lateral movements using the three jaw motion tracking systems. Each subject's mandibular movement was recorded twice with a 1-week interval. Five parameters-sagittal condylar inclination (SCI) angle, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle-were acquired for further analysis. The precision of the jaw motion tracking systems was evaluated by comparing the results of two measurements of the same parameter. Simultaneously, cone beam computed tomography (CBCT) was utilized during the initial data acquisition and was aligned with intercuspal position (ICP) and edge-to-edge occlusion intraoral scan data. Bone landmarks were used to calculate bilateral SCI as a reference for comparison with the SCI values from each jaw motion tracking system. An independent-sample t-test was conducted to compare parameter differences, with statistical significance set at a p-value below 0.05. RESULTS: There were no significant differences among the three jaw motion tracking systems regarding the corrected values of SCI, incisal guide angle, Bennett angle, lateral condylar inclination angle, and Fischer's angle during the 1-week interval (p > 0.05). The values of bilateral SCI obtained by CBCT were 48.57 ± 6.74 (L) and 48.35 ± 5.28 (R), respectively. No significant differences were found between the reference SCI and those parameters measured by the KaVo ARCUSdigma system and the Modjaw system (p > 0.05), while the results obtained from the SDiMatriX system indicated a significant difference compared to the reference SCI (p < 0.05). CONCLUSIONS: The three jaw motion tracking systems exhibited favorable results in terms of precision. Regarding trueness, both the KaVo ARCUSdigma system and the Modjaw system demonstrated a satisfactory levels suitable for applications in digital prosthodontics within clinical settings. However, further refinement is needed to enhance the trueness of the SDiMatriX system.

15.
J Prosthodont ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267252

RESUMO

PURPOSE: To investigate the effect of different post-curing light intensities on the trueness, compressive strength, and resin polymerization of 3D-printed 3-unit fixed dental prostheses (FPD). MATERIALS AND METHODS: A total of 60 specimens were prepared to support a 3-unit FDP with a deep chamfer marginal design, utilizing computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Light-polymerizing FDP resin with varying light intensities (105, 210, 420, and 840 mW/cm2) was employed for 10 min. Subsequently, trueness assessment, fracture load testing, scanning electron microscopy (SEM) surface examination, and Fourier-Transform Infrared (FTIR) analysis were conducted. A one-way analysis of variance (ANOVA) was performed to ascertain the differences between the experimental groups (p < 0.05). RESULTS: The group exposed to 210 mW/cm2 showed the highest trueness (57.6 ± 2.1 µm), while the 840 mW/cm2 group had the highest deviation (79.3 ± 2.7 µm) (p < 0.001). Significant differences in fracture resistance were found between groups (p < 0.001), with mean fracture strengths of 1149.77 ± 67.81 N, 1264.92 ± 39.06 N, 1331.34 ± 53.62 N, and 1439.93 ± 34.58 N for light intensities of 105, 210, 420, and 840 mW/cm2, respectively (p < 0.001). The resin polymerization analysis shows a peak intensity surge at 3579 cm-1 for O-H and C-H stretching vibrations, except in samples exposed to 105 mw/cm2 light, with the lowest peak at 2890 cm-1. The performance of resin polymerization is most significant under the condition of 840 mW/cm2. CONCLUSION: The light intensity of 210 mW/cm2 exhibited the highest trueness, while the 840 mW/cm2 group showed the highest deviation. However, the light intensity of 840 mW/cm2 demonstrated the highest compressive strength. Furthermore, polymerization occurred at all post-treatment light intensities except 105 mW/cm2. These findings indicate that while low-intensity usage offers greater trueness, high-intensity usage provides better compressive strength and polymerization. Therefore, 210 mW/cm2 could be the recommended solution for post-curing.

16.
J Prosthodont ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706414

RESUMO

PURPOSE: To evaluate the effects of two base types and three restoration designs on the resin consumption and trueness of the 3D-printed dental casts. Additionally, the study explored the dimensional stability of these 3D-printed dental casts after 1 year of storage. MATERIALS AND METHODS: Various types of reference dental casts were specifically designed to represent three types of dental restoration fabrications, including full-arch (FA), long-span (LS), and single-unit (SU) prostheses. The reference casts were digitized with a dental laboratory scanner and used to create flat and hollow base designs (N = 18) for the 3D-printed study casts. The 3D-printed study casts were digitized and evaluated against their corresponding references immediately after 3D printing and again after 1 year of storage, with the trueness quantified using the root mean square error (RMSE) at both time points. Volumes of resin used were recorded to measure resin consumption, and the weights of the 3D-printed study casts were also measured. The data were analyzed using two-way ANOVA and a Tukey post hoc test, α = 0.05. RESULTS: Volumetric analysis showed the flat-base design had significantly higher resin consumption with weights for the FA group at 42.51 ± 0.16 g, the LS group at 31.64 ± 0.07 g, and the SU group at 27.67 ± 0.31 g, as opposed to 26.22 ± 1.01 g, 22.86 ± 0.93 g, and 20.10 ± 0.19 g for the hollow designs respectively (p < 0.001). Trueness, assessed through two-way ANOVA, revealed that the flat-base design had lower RMSE values indicating better trueness in the LS (54 ± 6 µm) and SU (59 ± 7 µm) groups compared to the hollow-base design (LS: 73 ± 5, SU: 99 ± 11 µm, both p < 0.001), with no significant difference in the FA group (flat-base: 50 ± 3, hollow: 47 ± 5 µm, p = 0.398). After 1 year, the flat-base design demonstrated superior dimensional stability in the LS (flat base: 56 ± 6 µm, hollow base: 149 ±45 µm, p < 0.001) and SU groups (flat base: 95 ± 8 µm, hollow base: 183 ±27 µm, p < 0.001), with the FA group showing no significant difference in the base design (flat base: 47 ± 9, hollow base: 62 ± 12 µm, p = 0.428). CONCLUSIONS: The hollow-base design group showed lower resin consumption than the flat-base design group. However, the flat-base designs exhibited superior trueness and less distortion after 1 year of storage. These findings indicate that despite the higher material usage, flat-base designs provide better initial accuracy and maintain their dimensional stability over time for most groups.

17.
J Prosthodont ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023016

RESUMO

PURPOSE: The present study evaluated the effects of the root portion design, segment (middle vs. apical), and part (die vs. cast) on the trueness of three-dimensional (3D)-printed removable die-cast complex. MATERIAL AND METHODS: The trueness of apical and middle segments of the root portion of 45 3D-printed removable dies and casts with three different root portion designs (n = 15) was assessed using a metrology-grade computer program. The three removable dies and cast designs (root form [RF], conical [CON], and cylindric [CYL]) were created using professional computer-aided manufacturing computer programs (DentalCAD 3.1 Rijeka, and InLab CAD 22.0), and manufactured using stereolithographic 3D printer (Form3; FormLabs, Somerville, MA). Subsequently, the 3D-printed removable dies and casts were scanned by a single operator with an intraoral scanner (PrimeScan; Dentsply Sirona, Charlotte, NC), and their respective standard tessellation language files were aligned and compared to master reference files in a metrology-grade computer program (Geomagic Control X; 3D systems, Rock Hill, NC). The root mean square (RMS) values of the middle and apical segments for each removable die and cast were calculated and analyzed using a mixed model including a repeated measure 3-way analysis of variance (ANOVA) and post-hoc stepdown Bonferroni-corrected pairwise comparisons (α = 0.05). RESULTS: A statistically significant 3-way interaction between factors was detected, suggesting that the part (removable die or alveolar cast) and their design affected the RMS values of their apical and middle root portion segment. (p = 0.045). The post-hoc analysis identified significant differences between RMS values of the apical segments of the CON and CYL removable dies (p = 0.005). Significant differences were observed between the middle and apical segments of the CON (p < 0.001) and RF removable die designs (p = 0.004). No statistically significant differences were noticed between the RMS of the different alveolar cast designs (p > 0.05). Significant differences were detected between the apical and middle segments of the same alveolar cast design (p < 0.05). CONCLUSIONS: For the manufacturing trinomial and 3D printing strategy used in the present study, the interaction of the part, design, and segment affected the trueness of removable dies and alveolar casts. The trueness was higher on the middle segment on removable dies and alveolar casts in all designs used, except for CYL removable dies, where the trueness difference between segments was small. Higher trueness values may be achieved with designs with simple apical segment geometries.

18.
J Evid Based Dent Pract ; 24(1): 101933, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38448118

RESUMO

OBJECTIVES: Accuracy is a crucial factor when assessing the quality of digital impressions. This systematic review aims to assess the accuracy of intraoral scan (IOS) in obtaining digital impressions of edentulous jaws. METHODS: This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42022382983). A thorough retrieval of 7 electronic databases was undertaken, encompassing MEDLINE (PubMed), Web of Science, EMBASE, Scopus, Cochrane Library, Virtual Health Library, and Open gray, through September 11, 2023. A snowball search was performed by tracing the reference lists of the included studies. The Population, Intervention, Comparison, and Outcome (PICO) question of this systematic review was: "What is the accuracy of intraoral scan in obtaining digital impressions of edentulous arches?" The Modified Methodological Index for Nonrandomized Studies (MINORS) was employed to assess the risk of bias. RESULTS: Among the studies retrieved from databases and manual search, a total of 25 studies were selected for inclusion in this systematic review, including 9 in vivo and 16 in vitro studies. Twenty-one of the included studies utilized the 3D deviation analysis method, while 4 studies employed the linear or angular deviation analysis method. The accuracy results of in vitro studies indicated a trueness range of 20-600 µm and a precision range of 2-700 µm. Results of in vivo studies indicated a trueness range of 40-1380 µm, while the precision results were not reported. CONCLUSION: According to the results of this study, direct digital impressions by IOS cannot replace the conventional impressions of completely edentulous arches in vivo. Edentulous digital impressions by IOS demonstrated poor accuracy in peripheral areas with mobile tissues, such as the soft palate, vestibular sulcus, and sublingual area.

19.
Clin Oral Implants Res ; 34(5): 531-541, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892499

RESUMO

OBJECTIVES: Different static computer-assisted implant surgery (sCAIS) systems are available that are based on different design concepts. The objective was to assess seven different systems in a controlled environment. MATERIALS AND METHODS: Each n = 20 implants were placed in identical mandible replicas (total n = 140). The systems utilized either drill-handles (group S and B), drill-body guidance (group Z and C), had the key attached to the drill (group D and V), or combined different design concepts (group N). The achieved final implant position was digitized utilizing cone-beam tomography and compared with the planned position. The angular deviation was defined as the primary outcome parameter. The means, standard deviation, and 95%-confidence intervals were analyzed statistically with 1-way ANOVA. A linear regression model was applied with the angle deviation as predictor and the sleeve height as response. RESULTS: The overall angular deviation was 1.94 ± 1.51°, the 3D-deviation at the crest 0.54 ± 0.28 mm, and at the implant tip 0.67 ± 0.40 mm, respectively. Significant differences were found between the tested sCAIS systems. The angular deviation ranged between 0.88 ± 0.41° (S) and 3.97 ± 2.01° (C) (p < .01). Sleeve heights ≤4 mm are correlated with higher angle deviations, sleeve heights ≥5 mm with lower deviations from the planned implant position. CONCLUSIONS: Significant differences were found among the seven tested sCAIS systems. Systems that use drill-handles achieved the highest accuracy, followed by the systems that attach the key to the drill. The sleeve height appears to impact the accuracy.


Assuntos
Implantes Dentários , Cirurgia Assistida por Computador , Implantação Dentária Endóssea/métodos , Desenho Assistido por Computador , Tomografia Computadorizada de Feixe Cônico , Cirurgia Assistida por Computador/métodos , Imageamento Tridimensional
20.
Clin Oral Investig ; 27(3): 1301-1310, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36333533

RESUMO

OBJECTIVES: The purpose of this self-controlled clinical study was to evaluate the trueness of occlusal contacts of chairside CAD/CAM crowns fabricated using different ceramic materials. MATERIALS AND METHODS: Ten volunteers (8 females, 2 males, average aged 20-30) were recruited in this study registered in the Clinical Trials Registry (#NCT05346744). After tooth preparation on tooth 36 or 46, an optical scan unit (CEREC Omnicam, Sirona Dental Systems, Germany) was utilized to perform the intraoral scanning. For each volunteer, 6 crowns were fabricated via the chairside CAD/CAM process (CEREC, Sirona Dental Systems, Germany) using the following materials: InCoris TZI (ZIR), Celtra Duo (CD), e.max CAD (EMA), UP.CAD (UP), Enamic (ENA) and Hyramic (HY). The microhardness of the milled surfaces was measured through a Vickers hardness Tester (HVS-50Z, Trojan, China). Together with the amount of occlusal adjustment, the occlusal contact trueness at both milling and postprocessing stages were quantitatively analyzed by using a high-precision scanner (ATOS, GOM Technologies, USA) and a reverse engineering software (Geomagic Control, 3D Systems, Rock Hill, SC). The times of chairside occlusal adjustment were also recorded. Data were analyzed by one-way analysis of variance (ANOVA) and ANOVA with randomized block design followed by Bonferroni test (p = 0.05). RESULTS: Significant differences were found in surface microhardness of the materials tested (CD > EMA ~ UP > ENA > HY > ZIR, p < 0.05). Regarding the occlusal contact trueness at milling stage, ZIR showed the lowest (p < 0.05), while no significant difference was found among others (p > 0.05). At postprocessing stage, except for ENA, the occlusal contact trueness of ZIR was significantly lower than that of others (p < 0.05). As for occlusal adjustment amount, ZIR was lower than CD and ENA (p < 0.05). In addition, ENA, HY and ZIR required fewer times of occlusal adjustment than EMA, UP and CD. CONCLUSIONS: The type of chairside CAD/CAM ceramic materials affected the occlusal contact trueness throughout the process of manufacturing and the amount of clinical occlusal adjustment as well. Zirconia exhibited the worst occlusal contact trueness at both milling and postprocessing stages, while the amount of occlusal adjustment was the least, which recommended the least occlusal compensation. CLINICAL RELEVANCE: For better trueness, different negative occlusal offsets are suggested to be applied in the design process, so as to suit the material of the restoration.


Assuntos
Cerâmica , Planejamento de Prótese Dentária , Humanos , Coroas , Desenho Assistido por Computador , Ajuste Oclusal , Software , Porcelana Dentária
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa