Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.683
Filtrar
1.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595566

RESUMO

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/patologia , Macrófagos Associados a Tumor
2.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769657

RESUMO

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

3.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388391

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aloenxertos/imunologia , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Terapia de Imunossupressão , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Oncogenes , Organoides/efeitos dos fármacos , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
4.
Genes Dev ; 36(9-10): 582-600, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654454

RESUMO

One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas. In contrast, ectopic expression of the m96cl in NSCLC cells results in a robust suppression of migration and invasion in vitro, and tumor growth and metastasis in vivo. Detailed immune profiling of the tumors revealed a significant enrichment of activated CD8+ cytotoxic T lymphocytes (CD8+ CTLs) in m96cl-expressing tumors, and m96cl-mediated suppression of tumor growth and metastasis was CD8+ CTL-dependent. Using coculture assays with naïve immune cells, we show that m96cl expression drives paracrine stimulation of CD8+ CTL proliferation and function. Using tumor microenvironment-associated gene expression profiling, we identified that m96cl elevates the interleukin-2 (IL2) signaling pathway and results in increased IL2-mediated paracrine stimulation of CD8+ CTLs. Furthermore, we identified that the m96cl modulates the expression of IL2 in cancer cells by regulating the expression of transcriptional repressors Foxf2 and Zeb1, and thereby alters the levels of secreted IL2 in the tumor microenvironment. Last, we show that in vivo depletion of IL2 abrogates m96cl-mediated activation of CD8+ CTLs and results in loss of metastatic suppression. Therefore, we have identified a novel mechanistic role of the m96cl in the suppression of lung cancer growth and metastasis by inducing an IL2-mediated systemic CD8+ CTL immune response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T Citotóxicos , Microambiente Tumoral
5.
Am J Hum Genet ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270649

RESUMO

The tumor immune microenvironment (TIME) plays key roles in tumor progression and response to immunotherapy. Previous studies have identified individual germline variants associated with differences in TIME. Here, we hypothesize that common variants associated with breast cancer risk or cancer-related traits, represented by polygenic risk scores (PRSs), may jointly influence immune features in TIME. We derived 154 immune traits from bulk gene expression profiles of 764 breast tumors and 598 adjacent normal tissue samples from 825 individuals with breast cancer in the Nurses' Health Study (NHS) and NHSII. Immunohistochemical staining of four immune cell markers were available for a subset of 205 individuals. Germline PRSs were calculated for 16 different traits including breast cancer, autoimmune diseases, type 2 diabetes, ages at menarche and menopause, body mass index (BMI), BMI-adjusted waist-to-hip ratio, alcohol intake, and tobacco smoking. Overall, we identified 44 associations between germline PRSs and immune traits at false discovery rate q < 0.25, including 3 associations with q < 0.05. We observed consistent inverse associations of inflammatory bowel disease (IBD) and Crohn disease (CD) PRSs with interferon signaling and STAT1 scores in breast tumor and adjacent normal tissue; these associations were replicated in a Norwegian cohort. Inverse associations were also consistently observed for IBD PRS and B cell abundance in normal tissue. We also observed positive associations between CD PRS and endothelial cell abundance in tumor. Our findings suggest that the genetic mechanisms that influence immune-related diseases are also associated with TIME in breast cancer.

6.
Immunity ; 49(4): 764-779.e9, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332632

RESUMO

The major types of non-small-cell lung cancer (NSCLC)-squamous cell carcinoma and adenocarcinoma-have distinct immune microenvironments. We developed a genetic model of squamous NSCLC on the basis of overexpression of the transcription factor Sox2, which specifies lung basal cell fate, and loss of the tumor suppressor Lkb1 (SL mice). SL tumors recapitulated gene-expression and immune-infiltrate features of human squamous NSCLC; such features included enrichment of tumor-associated neutrophils (TANs) and decreased expression of NKX2-1, a transcriptional regulator that specifies alveolar cell fate. In Kras-driven adenocarcinomas, mis-expression of Sox2 or loss of Nkx2-1 led to TAN recruitment. TAN recruitment involved SOX2-mediated production of the chemokine CXCL5. Deletion of Nkx2-1 in SL mice (SNL) revealed that NKX2-1 suppresses SOX2-driven squamous tumorigenesis by repressing adeno-to-squamous transdifferentiation. Depletion of TANs in SNL mice reduced squamous tumors, suggesting that TANs foster squamous cell fate. Thus, lineage-defining transcription factors determine the tumor immune microenvironment, which in turn might impact the nature of the tumor.


Assuntos
Diferenciação Celular/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Fatores de Transcrição SOXB1/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Microambiente Tumoral/genética
7.
Exp Cell Res ; 439(1): 114076, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719174

RESUMO

Glioblastoma (GBM) is a common primary central nervous system tumor. The molecular mechanisms of glioma are unknown, and the prognosis is poor. Therefore, exploring the underlying mechanisms and screening for new prognostic markers and therapeutic targets is crucial. We utilized the weighted gene co-expression network analysis (WGCNA), Differentially Expressed Genes (DEGs), and LASSO-COX analysis to identify three target genes. Next, we constructed and evaluated a prognostic model, screening out COL8A1 as a risk gene. Through a sequence of cellular functional experiments, in vivo studies, and RNA sequencing, we delved into exploring the functional effects and molecular mechanisms of COL8A1 on GBM cells. Finally, the correlation between COL8A1 and tumor immune cells and different inflammatory responses was analyzed. Immunohistochemistry experiments revealed the influence of COL8A1 on macrophage polarization. The COL8A1 expression level was associated with the grade, prognosis, and tumor microenvironment (TME) of glioma. Functional experiments showed that COL8A1 inhibited GBM cell apoptosis and promoted migration, invasion, and proliferation in vitro and in vivo. We also found that COL8A1 promotes the epithelial-mesenchymal transition process and may mediate the activation of the ERK pathway through SHC1. In addition, immune infiltration analysis showed that COL8A1 was closely associated with macrophages in glioma tissues, significantly suppressing the signaling of M1-like -type macrophages and enhancing the signaling of M2-like -type macrophages. COL8A1 was first found to be associated with prognosis, progression, and immune microenvironment of glioma and may serve as a new marker of prognosis and a therapeutic target.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma , Microambiente Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Camundongos Nus , Prognóstico , Microambiente Tumoral/genética
8.
BMC Biol ; 22(1): 69, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519942

RESUMO

BACKGROUND: Recently, long non-coding RNAs (lncRNAs) have been demonstrated as essential roles in tumor immune microenvironments (TIME). Nevertheless, researches on the clinical significance of TIME-related lncRNAs are limited in lung adenocarcinoma (LUAD). METHODS: Single-cell RNA sequencing and bulk RNA sequencing data are integrated to identify TIME-related lncRNAs. A total of 1368 LUAD patients are enrolled from 6 independent datasets. An integrative machine learning framework is introduced to develop a TIME-related lncRNA signature (TRLS). RESULTS: This study identified TIME-related lncRNAs from integrated analysis of single­cell and bulk RNA sequencing data. According to these lncRNAs, a TIME-related lncRNA signature was developed and validated from an integrative procedure in six independent cohorts. TRLS exhibited a robust and reliable performance in predicting overall survival. Superior prediction performance barged TRLS to the forefront from comparison with general clinical features, molecular characters, and published signatures. Moreover, patients with low TRLS displayed abundant immune cell infiltration and active lipid metabolism, while patients with high TRLS harbored significant genomic alterations, high PD-L1 expression, and elevated DNA damage repair (DDR) relevance. Notably, subclass mapping analysis of nine immunotherapeutic cohorts demonstrated that patients with high TRLS were more sensitive to immunotherapy. CONCLUSIONS: This study developed a promising tool based on TIME-related lncRNAs, which might contribute to tailored treatment and prognosis management of LUAD patients.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Reparo do DNA , Pulmão , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
9.
Semin Cancer Biol ; 95: 120-139, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572731

RESUMO

Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-ß is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-ß-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-ß is a multifunctional cytokine; thus, the signaling by TGF-ß can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-ß can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-ß and EMP in carcinoma progression, it is essential to understand how TGF-ß enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-ß-targeting therapies that eliminate cancer cell plasticity.


Assuntos
Carcinoma , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal/genética , Citocinas , Transdução de Sinais , Microambiente Tumoral
10.
Physiol Genomics ; 56(8): 544-554, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38808774

RESUMO

The intratumoral microbiota can modulate the tumor immune microenvironment (TIME); however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of the bladder (UCB) remains unclear. To address this, we collected samples from 402 patients with UCB, including paired host transcriptome and tumor microbiome data, from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genera Lachnoclostridium and Sutterella in tumors could indirectly promote the EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for the targeted therapy of UCB.NEW & NOTEWORTHY The intratumoral microbiota may mediate the bladder tumor inflammatory response, thereby promoting the epithelial-mesenchymal transition program and influencing tumor immune infiltration.


Assuntos
Transição Epitelial-Mesenquimal , Inflamação , Microbiota , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Transição Epitelial-Mesenquimal/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Masculino , Feminino , Clostridiales/genética , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
11.
BMC Genomics ; 25(1): 413, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671348

RESUMO

BACKGROUND: Disulfidptosis is a novel form of programmed cell death induced by high SLC7A11 expression under glucose starvation conditions, unlike other known forms of cell death. However, the roles of disulfidptosis in cancers have yet to be comprehensively well-studied, particularly in ccRCC. METHODS: The expression profiles and somatic mutation of DGs from the TCGA database were investigated. Two DGs clusters were identified by unsupervised consensus clustering analysis, and a disulfidptosis-related prognostic signature (DR score) was constructed. Furthermore, the predictive capacity of the DR score in prognosis was validated by several clinical cohorts. We also developed a nomogram based on the DR score and clinical features. Then, we investigated the differences in the clinicopathological information, TMB, tumor immune landscapes, and biological characteristics between the high- and low-risk groups. We evaluated whether the DR score is a robust tool for predicting immunotherapy response by the TIDE algorithm, immune checkpoint genes, submap analysis, and CheckMate immunotherapy cohort. RESULTS: We identified two DGs clusters with significant differences in prognosis, tumor immune landscapes, and clinical features. The DR score has been demonstrated as an independent risk factor by several clinical cohorts. The high-risk group patients had a more complicated tumor immune microenvironment and suffered from more tumor immune evasion in immunotherapy. Moreover, patients in the low-risk group had better prognosis and response to immunotherapy, particularly in anti-PD1 and anti-CTLA-4 inhibitors, which were verified in the CheckMate immunotherapy cohort. CONCLUSION: The DR score can accurately predict the prognosis and immunotherapy response and assist clinicians in providing a personalized treatment regime for ccRCC patients.


Assuntos
Carcinoma de Células Renais , Imunoterapia , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Prognóstico , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Nomogramas , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Mutação , Apoptose
12.
Mol Cancer ; 23(1): 58, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515134

RESUMO

Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.


Assuntos
Neoplasias , Linfócitos T Citotóxicos , Humanos , Epigênese Genética , Neoplasias/metabolismo , Imunoterapia , Biomarcadores/metabolismo
13.
Mol Cancer ; 23(1): 30, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341586

RESUMO

Bladder cancer ranks as the 10th most common cancer worldwide, with deteriorating prognosis as the disease advances. While immune checkpoint inhibitors (ICIs) have shown promise in clinical therapy in both operable and advanced bladder cancer, identifying patients who will respond is challenging. Anoikis, a specialized form of cell death that occurs when cells detach from the extracellular matrix, is closely linked to tumor progression. Here, we aimed to explore the anoikis-based biomarkers for bladder cancer prognosis and immunotherapeutic decisions. Through consensus clustering, we categorized patients from the TCGA-BLCA cohort into two clusters based on anoikis-related genes (ARGs). Significant differences in survival outcome, clinical features, tumor immune environment (TIME), and potential ICIs response were observed between clusters. We then formulated a four-gene signature, termed "Ascore", to encapsulate this gene expression pattern. The Ascore was found to be closely associated with survival outcome and served as an independent prognosticator in both the TCGA-BLCA cohort and the IMvigor210 cohort. It also demonstrated superior predictive capacity (AUC = 0.717) for bladder cancer immunotherapy response compared to biomarkers like TMB and PD-L1. Finally, we evaluated Ascore's independent prognostic performance as a non-invasive biomarker in our clinical cohort (Gulou-Cohort1) using circulating tumor cells detection, achieving an AUC of 0.803. Another clinical cohort (Gulou-Cohort2) consisted of 40 patients undergoing neoadjuvant anti-PD-1 treatment was also examined. Immunohistochemistry of Ascore in these patients revealed its correlation with the pathological response to bladder cancer immunotherapy (P = 0.004). Impressively, Ascore (AUC = 0.913) surpassed PD-L1 (AUC = 0.662) in forecasting immunotherapy response and indicated better net benefit. In conclusion, our study introduces Ascore as a novel, robust prognostic biomarker for bladder cancer, offering a new tool for enhancing immunotherapy decisions and contributing to the tailored treatment approaches in this field.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Antígeno B7-H1/genética , Anoikis/genética , Progressão da Doença , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Imunoterapia , Biomarcadores , Microambiente Tumoral
14.
Mol Cancer ; 23(1): 131, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918817

RESUMO

Tumor immune microenvironment (TIME) consists of intra-tumor immunological components and plays a significant role in tumor initiation, progression, metastasis, and response to therapy. Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the cancer treatment paradigm. Although CAR-T cell immunotherapy has emerged as a successful treatment for hematologic malignancies, it remains a conundrum for solid tumors. The heterogeneity of TIME is responsible for poor outcomes in CAR-T cell immunotherapy against solid tumors. The advancement of highly sophisticated technology enhances our exploration in TIME from a multi-omics perspective. In the era of machine learning, multi-omics studies could reveal the characteristics of TIME and its immune resistance mechanism. Therefore, the clinical efficacy of CAR-T cell immunotherapy in solid tumors could be further improved with strategies that target unfavorable conditions in TIME. Herein, this review seeks to investigate the factors influencing TIME formation and propose strategies for improving the effectiveness of CAR-T cell immunotherapy through a multi-omics perspective, with the ultimate goal of developing personalized therapeutic approaches.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Genômica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Int J Cancer ; 154(7): 1143-1157, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059788

RESUMO

Radiotherapy has unique immunostimulatory and immunosuppressive effects. Although high-dose radiotherapy has been found to have systemic antitumor effects, clinically significant abscopal effects were uncommon on the basis of irradiating single lesion. Low-dose radiation therapy (LDRT) emerges as a novel approach to enhance the antitumor immune response due to its role as a leverage to reshape the tumor immune microenvironment (TIME). In this article, from bench to bedside, we reviewed the possible immunomodulatory role of LDRT on TIME and systemic tumor immune environment, and outlined preclinical evidence and clinical application. We also discussed the current challenges when LDRT is used as a combination therapy, including the optimal dose, fraction, frequency, and combination of drugs. The advantage of low toxicity makes LDRT potential to be applied in multiple lesions to amplify antitumor immune response in polymetastatic disease, and its intersection with other disciplines might also make it a direction for radiotherapy-combined modalities.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , Previsões , Imunidade , Terapia Combinada , Imunomodulação , Imunoterapia , Microambiente Tumoral
16.
Int J Cancer ; 154(7): 1285-1297, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180065

RESUMO

CD25, also known as the interleukin-2 receptor α chain (IL-2Rα), is highly expressed on regulatory T cells (Tregs), but relatively lower on effector T cells (Teffs). This makes it a potential target for Treg depletion, which can be used in tumor immunotherapy. However, marketed anti-CD25 antibodies (Basiliximab and Daclizumab) were originally developed as immunosuppressive drugs to prevent graft rejection, because these antibodies can block IL-2 binding to CD25 on Teffs, which in turn destroys the function of Teffs. Recent studies have shown that non-IL-2-blocking anti-CD25 antibodies have displayed exciting antitumor effects. Here, we screened out a non-IL-2-blocking anti-CD25 monoclonal antibody (mAb) 7B7 by hybridoma technology, and confirmed its antitumor activity via depleting Tregs in a CD25 humanized mouse model. Subsequently, we verified that the humanized 7B7, named as h7B7-15S, has comparable activities to 7B7, and that its Treg depletion is further increased when combined with anti-CTLA-4, leading to enhanced remodeling of the tumor immune microenvironment. Moreover, our findings reveal that the Fab form of h7B7-15S has the ability to deplete Tregs, independent of the Fc region. Taken together, our studies expand the application of anti-CD25 in tumor immunotherapy and provide insight into the underlying mechanism.


Assuntos
Anticorpos Monoclonais , Neoplasias , Camundongos , Animais , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imunossupressores , Linfócitos T Reguladores , Microambiente Tumoral
17.
Cancer Metastasis Rev ; 42(2): 575-587, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061644

RESUMO

Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Genômica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Evolução Molecular , Microambiente Tumoral/genética
18.
Cancer Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890815

RESUMO

Common epidermal growth factor receptor (EGFR) mutations are usually not considered for immunotherapy in non-small cell lung cancer (NSCLC) due to poor efficacy. However, whether uncommon EGFR mutations are suitable for immunotherapy has not been thoroughly studied. Thus, we explored the tumor immune microenvironment (TME) features in uncommon EGFR mutant NSCLC. In this study, a total of 41 patients with EGFR mutations were included, the majority (85.4%) of whom were stage I. Among them, 22 patients harbored common mutations, while 19 patients presented with uncommon mutations. Compared with common mutations, uncommon mutations exhibited more infiltrating T cells and fewer M2 macrophages, upregulated expression of antigen processing and a presentation pathway. Unsupervised clustering based on the mIF profile identified two classes with heterogeneous TME in uncommon mutations. Class 1 featured the absence of PD-1+ cytotoxic T cell infiltration, and class 2 displayed a hotter TME because of the downregulated expression of hypoxia (p < 0.001), oxidative phosphorylation (p = 0.009), and transforming growth factor beta signaling (p = 0.01) pathways as well as increased expression of CTLA4 (p = 0.001) and PDCD1 (p = 0.004). The association of CTLA4 and PDCD1 with TME profiles was validated in a TCGA lung adenocarcinoma cohort with uncommon EGFR mutations. Our study reveals the distinct and heterogeneous TME features in uncommon EGFR mutant NSCLC.

19.
Cancer Sci ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140431

RESUMO

The presence of Fusobacterium nucleatum is associated with an immunosuppressive tumor immune microenvironment (TIM) in primary colorectal cancer (CRC), contributing to tumor progression. Its persistence in CRC liver metastasis tissues raises questions about its role in modulating local and systemic immune responses and influencing recurrence patterns. This retrospective cohort study of 218 patients with CRC liver metastasis investigated the association of F. nucleatum in CRC liver metastasis tissues with systemic inflammation, TIM alterations, and the number of metastatic organs involved in recurrence. Two-step polymerase chain reaction (PCR), including digital PCR, detected F. nucleatum in 42% (92/218) of fresh-frozen specimens of CRC liver metastases. Compared with the F. nucleatum-none group, the F. nucleatum-high group showed higher C-reactive protein levels (0.82 vs. 0.22 mg/dL; Ptrend = 0.02), lower numbers of CD8+ cells (33.2 vs. 65.3 cells/mm2; Ptrend = 0.04) and FOXP3+ cells (11.3 vs. 21.7 cells/mm2; Ptrend = 0.01) in the TIM, and a greater number of metastatic organs involved in recurrence (1.6 vs. 1.1; p < 0.001). The presence of F. nucleatum in CRC liver metastasis tissues was associated with increased systemic inflammation, TIM alterations, and a greater number of metastatic organs involved in recurrence. These findings suggest a potential contribution of F. nucleatum to the metastatic propensity of CRC cells and could inform future research to enhance understanding of the interaction between tumor, host, and microbes in the metastatic process.

20.
Cancer Sci ; 115(8): 2528-2539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38720474

RESUMO

Occult lymph node metastasis (OLNM) is one of the main causes of regional recurrence in inoperable N0 non-small cell lung cancer (NSCLC) patients following stereotactic ablation body radiotherapy (SABR) treatment. The integration of immunotherapy and SABR (I-SABR) has shown preliminary efficiency in mitigating this recurrence. Therefore, it is necessary to explore the functional dynamics of critical immune effectors, particularly CD8+ T cells in the development of OLNM. In this study, tissue microarrays (TMAs) and multiplex immunofluorescence (mIF) were used to identify CD8+ T cells and functional subsets (cytotoxic CD8+ T cells/predysfunctional CD8+ T cells (CD8+ Tpredys)/dysfunctional CD8+ T cells (CD8+ Tdys)/other CD8+ T cells) among the no lymph node metastasis, OLNM, and clinically evident lymph node metastasis (CLNM) groups. As the degree of lymph node metastasis escalated, the density of total CD8+ T cells and CD8+ Tdys cells, as well as their proximity to tumor cells, increased progressively and remarkably in the invasive margin (IM). In the tumor center (TC), both the density and proximity of CD8+ Tpredys cells to tumor cells notably decreased in the OLNM group compared with the group without metastasis. Furthermore, positive correlations were found between the dysfunction of CD8+ T cells and HIF-1α+CD8 and cancer microvessels (CMVs). In conclusion, the deterioration in CD8+ T cell function and interactive dynamics between CD8+ T cells and tumor cells play a vital role in the development of OLNM in NSCLC. Strategies aimed at improving hypoxia or targeting CMVs could potentially enhance the efficacy of I-SABR.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metástase Linfática , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Metástase Linfática/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Linfonodos/patologia , Linfonodos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa