Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 8(5): 1907-1920, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35482571

RESUMO

Single-modality tumor therapy confronts many challenges, such as incomplete tumor ablation, tumor metastasis, and limited tumor tissue penetration. Combination therapy simultaneously achieves deep drug delivery to fully exert synergistic effects and has received increasing attention. Herein, based on the excellent efficacy of anti-angiogenesis therapy combined with chemotherapy and the specific size of the poly-amidoamine dendrimer (PAMAM), we developed a pH-triggered size-converted nano-drug delivery system to co-deliver fruquintinib (FRU) and doxorubicin (DOX). This study used cyclic Arg-Gly-Asp (cRGD) as the target, pH-responsive liposomes (PRLs), and PAMAM as the drug carrier. The FRU and DOX-loaded small-particle-size complex polyamide-amine-doxorubicin (PD) was encapsulated into PRLs with the target to construct a size-converted nano-drug delivery system, PRL-PD/FRU-cRGD. This nanoparticle (∼120 nm) actively targeted tumor tissues and used the acidic microenvironment outside tumor cells to release FRU and small-particle-size complex PD (∼15 nm), enabling the conversion of large-size nanoparticles to small-size nanoparticles and resulting in efficient tumor accumulation. In addition, the released PD could realize the deep delivery of DOX, showing efficient deep tumor penetration and further enhancing the tumor-suppressing effect. The results of in vivo and in vitro experiments showed that PRL-PD/FRU-cRGD exhibited the excellent synergistic effects of anti-angiogenesis therapy combined with chemotherapy and effectively inhibited tumor cell proliferation and metastasis, thereby achieving efficient tumor therapy. Thus, PRL-PD/FRU-cRGD shows great potential for combined tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Benzofuranos , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Humanos , Lipossomos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Quinazolinas , Microambiente Tumoral
2.
Natl Sci Rev ; 8(7): nwaa221, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691686

RESUMO

2D nanomaterials generally exhibit enhanced physiochemical and biological functions in biomedical applications due to their high surface-to-volume ratio and surface charge. Conventional cancer chemotherapy based on nanomaterials has been hindered by their low drug loading and poor penetration in tumor tissue. To overcome these difficulties, novel materials systems are urgently needed. Hereby, the lanthanide-based porphyrin metal-organic framework (MOF) nanosheets (NSs) with promising cancer imaging/chemotherapy capacities are fabricated, which display superior performance in the drug loading and tumor tissue penetration. The biodegradable PPF-Gd NSs deliver an ultrahigh drug loading (>1500%) and demonstrate the stable and highly sensitive stimuli-responsive degradation/release for multimodal tumor imaging and cancer chemotherapy. Meanwhile, PPF-Gd NSs also exhibit excellent fluorescence and magnetic resonance imaging capability in vitro and in vivo. Compared to the traditional doxorubicin (DOX) chemotherapy, the in vivo results confirm the evident suppression of the tumor growth by the PPF-Gd/DOX drug delivery system with negligible side effects. This work further supports the potential of lanthanide-based MOF nanomaterials as biodegradable systems to promote the cancer theranostics technology development in the future.

3.
ACS Appl Mater Interfaces ; 9(22): 18450-18461, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28513140

RESUMO

Despite nanomedicine having shown great potential for reversing cancer cell resistance, the suboptimal transport across multiple biological obstacles seriously impedes its reaching targets at an efficacious level, which remains a challenging hurdle for clinical success in resistant cancer therapy. Here, a lipid-based hybrid nanoparticle was designed to efficiently deliver the therapeutics to resistant cells and treat resistant cancer in vivo. The hybrid nanoparticles (D-NPs/tetrandrine (TET)) are composed of a pH-responsive prodrug 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-doxorubicin (DOX), an efflux inhibitor TET, and a surfactant DSPE-[methoxy (poly(ethylene glycol))-2000] (DSPE-mPEG2000), which hierarchically combatted the sequential physiological and pathological barriers of drug resistance and exhibited prolonged blood circulation, high tumor accumulation, and deep tumor parenchyma penetration. In the meantime, the programmed stepwise activation of encapsulated TET and DOX suppressed the function of resistance-related P-glycoprotein in a timely manner and facilitated the DOX sustained accommodation in tumor cells. Through systematic studies, the results show that such a nanosystem dramatically enhances drug potency and significantly overcomes the DOX resistance of breast cancer with negligible systemic toxicities. These findings provide new strategies to systemically combat chemoresistant cancers.


Assuntos
Nanopartículas , Ativação Metabólica , Linhagem Celular Tumoral , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Humanos , Polietilenoglicóis , Pró-Fármacos
4.
J Control Release ; 238: 139-148, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27460683

RESUMO

Therapeutic nanoparticles (NPs) approved for clinical use in solid tumor therapy provide only modest improvements in patient survival, in part due to physiological barriers that limit delivery of the particles throughout the entire tumor. Here, we explore the thresholds for NP size and surface poly(ethylene glycol) (PEG) density for penetration within tumor tissue extracellular matrix (ECM). We found that NPs as large as 62nm, but less than 110nm in diameter, diffused rapidly within a tumor ECM preparation (Matrigel) and breast tumor xenograft slices ex vivo. Studies of PEG-density revealed that increasing PEG density enhanced NP diffusion and that PEG density below a critical value led to adhesion of NP to ECM. Non-specific binding of NPs to tumor ECM components was assessed by surface plasmon resonance (SPR), which revealed excellent correlation with the particle diffusion results. Intravital microscopy of NP spread in breast tumor tissue confirmed a significant difference in tumor tissue penetration between the 62 and 110nm PEG-coated NPs, as well as between PEG-coated and uncoated NPs. SPR assays also revealed that Abraxane, an FDA-approved non-PEGylated NP formulation used for cancer therapy, binds to tumor ECM. Our results establish limitations on the size and surface PEG density parameters required to achieve uniform and broad dispersion within tumor tissue and highlight the utility of SPR as a high throughput method to screen NPs for tumor penetration.


Assuntos
Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Neoplasias/metabolismo , Polietilenoglicóis/metabolismo , Paclitaxel Ligado a Albumina/administração & dosagem , Paclitaxel Ligado a Albumina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Difusão , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/metabolismo , Portadores de Fármacos/análise , Combinação de Medicamentos , Feminino , Humanos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/análise , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/análise , Ácido Poliglicólico/análise , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteoglicanas/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa