Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioorg Chem ; 145: 107219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377821

RESUMO

SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Neoplasias/tratamento farmacológico , Metilação
2.
J Cell Mol Med ; 22(8): 3955-3964, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29799152

RESUMO

To investigate the expression, role and mechanism of action of long non-coding RNA (lncRNA) ABHD11-AS1 in endometrial carcinoma. The expression of lncRNA ABHD11-AS1 was quantified by qRT-PCR in human endometrial carcinoma (n = 89) and normal endometrial tissues (n = 27). LncRNA ABHD11-AS1 was stably overexpressed or knocked-down in endometrial carcinoma cell lines to examine the cellular phenotype and expression of related molecules. Compared to normal endometrial tissue, lncRNA ABHD11-AS1 was significantly overexpressed in endometrial carcinoma. Overexpression of lncRNA ABHD11-AS1 promoted the proliferation, G1-S progression, invasion and migration of endometrial cancer cells; inhibited apoptosis; up-regulated cyclin D1, CDK1, CDK2, CDK4, Bcl-xl and VEGFA; and down-regulated p16, while ABHD11-AS1 down-regulation has the opposite effect. RNA pull down demonstrated that lncRNA ABHD11-AS1 binds directly to cyclin D1. Knockdown of cyclin D1 can reverse the effect of ABHD11-AS1. Overexpression of lncRNA ABHD11-AS1 increased the tumorigenicity and up-regulated cyclin D1 in an in vivo model of endometrial cancer in nude mice. LncRNA ABHD11-AS1 functions as an oncogene to promote cell proliferation and invasion in endometrial carcinoma by positively targeting cyclin D1.

3.
Cell Physiol Biochem ; 47(4): 1578-1588, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949791

RESUMO

BACKGROUND/AIMS: Prostate cancer gene expression marker 1 (PCGEM1) is a long noncoding RNA (lncRNA) and is well known as a promoter in prostate cancer and osteoarthritis synoviocytes. However, the role PCGEM1 plays in epithelial ovarian cancer is unknown. METHODS: PCGEM1 expression was examined in epithelial ovarian cancer and normal ovarian tissues using reverse transcription-PCR. Ovarian cancer cell phenotypes and genotypes were examined after PCGEM1 overexpression or downregulation in vitro; besides, the effects of PCGEM1 overexpression was also examined in vivo. RESULTS: PCGEM1 expression level was higher in epithelial ovarian cancer tissues than in normal ovarian tissues and was positively associated with differentiation (Well vs. Mod/Poor). Upregulation of PCGEM1 induced cancer cell proliferation, migration, and invasion, but decreased cell apoptosis through upregulating RhoA, YAP (Yes-associated protein), MMP2 (matrix metalloproteinase 2), Bcl-xL, and P70S6K expression; while PCGEM1 downregulation had the opposite effect. The nude mouse xenograft assay demonstrated that PCGEM1 overexpression promoted tumor growth. Furthermore, silencing RhoA expression reversed the effect of PCGEM1 and significantly inhibited RhoA, YAP, MMP2, Bcl-xL, and P70S6K protein expression. CONCLUSION: In conclusion, we suggest that PCGEM1 may be an inducer in epithelial ovarian cancer tumorigenesis and progression by upregulating RhoA and the subsequent expression of YAP, P70S6K, MMP2, and Bcl-xL.


Assuntos
Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Neoplasias Ovarianas/patologia
4.
Biochem Biophys Res Commun ; 505(4): 1090-1096, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30314699

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is the most common type of head and neck cancers which is notable for its distinctive pattern of geographical distribution. HOTAIR has been reported to regulate nasopharyngeal carcinoma tumorigenesis and progression. However, the detailed mechanism underlying HOTAIR-promoted nasopharyngeal carcinoma remains not fully understood. METHODS: We used RT-qPCR approach to examine genes expression and mRNA level. MTT assay and soft agar assay were used to detect cell growth rate in culture and under suspended condition, respectively. Besides, we employed wound healing assay and transwell invasion assay to determine migration and invasion ability of nasopharyngeal carcinoma cells. We predicted direct downstream targets of miR-101 by bioinformatic analysis, which was confirmed by dual luciferase reporter assay. RESULTS: HOTAIR was upregulated in NPC tissues and cells. miR-101 inhibitor greatly enhanced HOTAIR knockdown-regulated cell proliferation, migration and invasion of CNE1 and CNE2 cells. miR-101 was shown to directly bind 3'-UTR of COX-2 and downregulate COX-2 expression. Finally, COX-2 overexpression was demonstrated to rescue the tumor phenotypes of nasopharyngeal carcinoma cells attenuated by HOTAIR knockdown or miR-101 mimic. CONCLUSIONS: Here, we highlight the importance of HOTAIR/miR-101/COX-2 axis in progression of nasopharyngeal carcinoma cells. Our findings provide a novel mechanism for explaining HOTAIR-induced nasopharyngeal carcinoma and help developing the therapeutical strategies by targeting HOTAIR.


Assuntos
Ciclo-Oxigenase 2/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima , Movimento Celular , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Células HEK293 , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3013-3021, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29920344

RESUMO

Endometrial carcinoma is one of the most frequently diagnosed cancers in females. Long non-coding RNAs (lncRNAs) have been associated with cancer; its role in endometrial carcinoma is an emerging area of research. In this article, lncRNA TDRG1 expression in human endometrial carcinoma tissues and normal endometrial tissues was quantified by qRT-PCR. LncRNA TDRG1 was overexpressed or knocked-down in neither HEC-1B nor Ishikawa endometrial carcinoma cells, respectively, to assess cellular phenotype and expression of related molecules. Our results showed that lncRNA TDRG1 was significantly overexpressed in endometrial carcinoma tissues. Overexpression of lncRNA TDRG1 promoted endometrial carcinoma cell viability, invasion and migratory ability, inhibited apoptosis, and upregulated VEGF-A, PI3K, Bcl-2, MMP2 and survivin; knockdown of lncRNA TDRG1 had the opposite effects. LncRNA TDRG1 overexpression increased tumorigenicity in vivo and was associated with the upregulation of VEGF-A. RNA binding protein immunoprecipitation (RIP) assays confirmed that lncRNA TDRG1 directly binds to VEGF-A protein. Furthermore, knockdown of VEGFA in lncRNA TDRG1-overexpressing endometrial carcinoma cells reversed the effects of lncRNA TDRG1 on cell proliferation, invasion, migration and apoptosis. In conclusion, lncRNA TDRG1 may promote endometrial carcinoma cell proliferation and invasion by positively targeting VEGF-A and modulating relative genes.


Assuntos
Carcinogênese/genética , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/cirurgia , Endométrio/patologia , Endométrio/cirurgia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Proteínas/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer ; 16(1): 138, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818073

RESUMO

BACKGROUND: There is increasing evidence in support of the role of lncRNAs in tumor cell proliferation, differentiation and apoptosis. METHODS: We examined the expression of the lncRNA ABHD11-AS1 in epithelial ovarian cancer (EOC) tissues and normal ovarian tissues by real-time quantitative PCR (qRT-PCR). After inducing ABHD11-AS1 downregulation by small interfering RNA (siRNA) or ABHD11-AS1 overexpression by plasmid transfection, we examined the EOC cell phenotypes and expression of related molecules. RESULTS: Expression of the lncRNA ABHD11-AS1 in EOC tissues was higher than that in normal ovarian tissue. It was positively associated with the tumor stage (stage I/II vs. stage III/IV), and it was lower in the well-differentiated group than in the poorly/moderately differentiated group. Overexpression of ABHD11-AS1 in the ovarian cancer cell lines A2780 and OVCAR3 promoted ovarian cancer cell proliferation, invasion and migration, and inhibited apoptosis. Silencing of ABHD11-AS1 had the opposite effect. Subcutaneous injection of tumor cells in nude mice showed that ABHD11-AS1 could significantly promote tumor growth. In addition, intraperitoneal injection of tumor cells in the nude mice resulted in an increase in the metastatic ability of the tumor. Further, overexpression of ABHD11-AS1 upregulated the expression of RhoC and its downstream molecules P70s6k, MMP2 and BCL-xL. Silencing of ABHD11-AS1 had the opposite effect. The RNA pull-down assay showed that ABHD11-AS1 can combine directly with RhoC. Silencing of RhoC was found to inhibit the cancer-promoting effects of lncRNA ABHD11-AS1. Thus, it seems that RhoC is a major target of the lncRNA ABHD11-AS1. CONCLUSIONS: This is the first study to demonstrate the role of RhoC in the tumor-promoting effects of the lncRNA ABHD11-AS1. The present findings shed light on new therapeutic targets for ovarian cancer treatment.


Assuntos
Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Apoptose , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos
7.
Apoptosis ; 22(12): 1543-1552, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094270

RESUMO

Long noncoding RNAs (lncRNAs) are RNA molecules more than 200 nucleotides in length that do not encode proteins. Recent studies have reported increasing numbers of functional lncRNAs. Maternally expressed gene 3 (MEG3) is a maternally imprinted gene encoding an lncRNA that plays a tumor suppressor role in various tumors. However, there has been rare report on mechanism of tumorigenesis and progression of endometrial carcinoma. In the present study, we found significantly lower MEG3 expression in endometrial carcinoma tissues than in normal endometrial tissues. MEG3 overexpression inhibited endometrial cancer cell proliferation, invasion, and metastasis; promoted apoptosis; and inhibited the activation of the phosphoinositide 3-kinase (PI3K)/m-TOR signaling pathway. RNA immunoprecipitation assay (RIP) showed that MEG3 can combine directly with PI3K. Tumor xenograft implantation in nude mice showed that MEG3 could significantly suppress tumor growth. These findings provide potential new therapeutic targets for treating endometrial cancer.


Assuntos
Carcinogênese/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/fisiopatologia , Fosfatidilinositol 3-Quinases/genética , RNA Longo não Codificante/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Progressão da Doença , Neoplasias do Endométrio/metabolismo , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
8.
Front Pharmacol ; 14: 1208044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361202

RESUMO

The human intestinal microbiota, also known as the gut microbiota, comprises more than 100 trillion organisms, mainly bacteria. This number exceeds the host body cells by a factor of ten. The gastrointestinal tract, which houses 60%-80% of the host's immune cells, is one of the largest immune organs. It maintains systemic immune homeostasis in the face of constant bacterial challenges. The gut microbiota has evolved with the host, and its symbiotic state with the host's gut epithelium is a testament to this co-evolution. However, certain microbial subpopulations may expand during pathological interventions, disrupting the delicate species-level microbial equilibrium and triggering inflammation and tumorigenesis. This review highlights the impact of gut microbiota dysbiosis on the development and progression of certain types of cancers and discusses the potential for developing new therapeutic strategies against cancer by manipulating the gut microbiota. By interacting with the host microbiota, we may be able to enhance the effectiveness of anticancer therapies and open new avenues for improving patient outcomes.

9.
Front Immunol ; 14: 1253964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173719

RESUMO

As a component of the innate immune system, there is emerging evidence to suggest that neutrophils may play a critical role in the initiation and progression of hepatocellular carcinoma (HCC). Neutrophil extracellular traps (NETs) are web-like chromatin structures that protrude from the membranes during neutrophil activation. Recent research has shown that NETs, which are at the forefront of the renewed interest in neutrophil studies, are increasingly intertwined with HCC. By exploring the mechanisms of NETs in HCC, we aim to improve our understanding of the role of NETs and gain deeper insights into neutrophil biology. Therefore, this article provides a summary of key findings and discusses the emerging field of NETs in HCC.


Assuntos
Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neutrófilos
10.
Discov Oncol ; 13(1): 100, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197602

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is one of the most common head and neck squamous cell carcinomas (HNSCC). Rho-associated kinase1 (ROCK1) is considered to promote progression of numerous cancers, however, its role in LSCC is still unknown. Here, the expression level of ROCK1 is higher in LSCC tissues than non-tumor tissues, and the expression level of ROCK1 is positively correlated with advanced stage and poor survival prognosis. ROCK1 knockdown in TU686 and TU212 cells dramatically inhibits cellular proliferation, migration and invasion. Whereas the overexpression of ROCK1 reversed these changes. FAK signaling pathway plays an essential role in promoting LSCC progression. Inhibiting FAK activity with TAE226 observably impairs the tumor-promoting effects. In conclusion, ROCK1 promotes LSCC tumorigenesis and progression via the FAK signaling pathway, targeting the ROCK1 molecule may represent potential targets for clinical LSCC treatment.

12.
J Cancer ; 12(3): 682-692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33403026

RESUMO

Prostate cancer (PCa) is one of the most common epithelial malignant tumors and the fifth leading cause of cancer death in men. An increasing number of studies have demonstrated that N6-methyladenosine (m6A) plays a crucial role in tumorigenesis and tumor development. However, little is known about the role and levels of common m6A regulators and m6A levels in PCa. In this study, we analyzed the characteristic expression of m6A regulators in PCa and castration-resistant prostate cancer (CRPC). UALCAN and cBioPortal were used to estimate the clinical value and genetic alterations of m6A regulators, respectively. The correlation between m6A regulators and androgen receptor (AR) was assessed using Gene Expression Profiling Interactive Analysis (GEPIA) by Pearson correlation statistics. Total m6A levels were detected in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice and PCa cell lines. Results showed that the expression of methyltransferase-like 3 (METTL3) and YTH domain family members, namely, YTHDC2, YTHDF1, and YTHDF2 were generally upregulated in PCa, whereas those of fat mass and obesity-associated protein (FTO), AlkB homolog 5 (ALKBH5), and methyltransferase-like 14 (METTL14) were downregulated. The expression of METTL3, METTL14, Wilms' tumor 1-associating protein (WTAP), YTHDC2, YTHDF1, and YTHDF2 were remarkably higher in CRPC with lymph node metastasis than that in CRPC with bone metastasis, whereas ALKBH5, FTO, and YTHDF3 significantly decreased in CRPC with lymph node metastasis tissues. YTHDF1, YTHDF2, and YTHDC2 were positively correlated with the Gleason grades of PCa, and METTL14, FTO, and ALKBH5 were negatively associated with the Gleason classification. M6A regulators were positively correlated with AR. Patients with a genomic alteration of m6A were associated with poor disease-free survival (DFS). The total m6A levels in TRAMP mice increased dramatically compared with those in tumor-free mice, and m6A levels in LNCaP cell lines were higher than DU145 and PC3 cell lines. In summary, METTL3, METTL14, ALKBH5, FTO, YTHDC2, YTHDF1, and YTHDF2 were abnormally expressed in PCa and related to Gleason classification. Changes in m6A levels maybe contributed to the development and progression of PCa.

13.
Front Cell Dev Biol ; 9: 757493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712671

RESUMO

WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a member of C2-WW-HECT E3 ligase family. Although it may execute carcinostatic actions in some scenarios, WWP1 functions as an oncoprotein under most circumstances. Here, we comprehensively review reports on regulation of WWP1 and its roles in tumorigenesis. We summarize the WWP1-mediated ubiquitinations of diverse proteins and the signaling pathways they involved, as well as the mechanisms how they affect cancer formation and progression. According to our analysis of database, in combination with previous reports, we come to a conclusion that WWP1 expression is augmented in various cancers. Gene amplification, as well as expression regulation mediated by molecules such as non-coding RNAs, may account for the increased mRNA level of WWP1. Regulation of enzymatic activity is another important facet to upregulate WWP1-mediated ubiquitinations. Based on the published data, we conclude that WWP1 employs interactions between multiple domains to autoinhibit its polyubiquitination activity in a steady state. Association of some substrates can partially release certain autoinhibition-related domains and make WWP1 have a moderate activity of polyubiquitination. Some cancer-related mutations can fully disrupt the inhibitory interactions and make WWP1 hyperactive. High expression level or hyperactivation of WWP1 may abnormally enhance polyubiquitinations of some oncoproteins or tumor suppressors, such as ΔNp63α, PTEN and p27, and ultimately promote cell proliferation, survival, migration and invasion in tumorigenesis. Given the dysregulation and oncogenic functions of WWP1 in some cancer types, it is promising to explore some therapeutic inhibitors to tune down its activity.

14.
Oncol Lett ; 20(3): 2225-2231, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32782539

RESUMO

Colorectal cancer (CRC) is the fourth most lethal malignancy and is the second most common cause of cancer-associated mortality worldwide. The development of high-throughput sequencing has enabled the identification of potential biomarkers for the diagnosis and treatment of various types of cancer. Although microRNA-101 (miR-101) has been demonstrated to be a potential biomarker of CRC, its detailed mechanisms remain to be fully discovered. In the present study, overall survival analysis was applied to determine the association between miR-101 and CRC prognosis. Reverse transcription-quantitative PCR (RT-qPCR) was used to examine gene expression levels in tissues and cells. Cell proliferative and apoptotic activities were determined by MTT and flow cytometry assays, respectively. Wound healing and Transwell assays were used to examine CRC cell migration and invasion, respectively. In the present study, RT-qPCR analysis indicated that miR-101 was significantly downregulated in CRC tissues and cells. However, clinical data collected from The Cancer Genome Atlas revealed no significant association between the expression levels of miR-101 and the prognosis of CRC. Additionally, miR-101 inhibited the progression of CRC by directly binding to the 3'-untranslated region of Ras-related protein Rap1b (Rap1b). This was associated with downregulation of Rap1b expression. Furthermore, the overexpression of Rap1b promoted miR-101 mimic-attenuated CRC cell progression. The present study demonstrated that miR-101 may be involved in the repression of the CRC progression by forming a negative feedback loop with Rap1b. The findings revealed the interaction between miR-101 and Rap1b during the progression of CRC, which could aid the development of therapeutic strategies.

15.
Front Oncol ; 10: 591698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489890

RESUMO

The Yes-associated protein (YAP1) is a main effector of the canonical Hippo pathway, which contributes greatly to tumor initiation, progression, and metastasis in multiple cancers, including gastric cancer (GC). Due to limited knowledge of YAP1 upregulation in cancer, it is a great challenge of therapeutic targets toward the Hippo-YAP1 pathway. Here, we identify nucleolar spindle-associated protein 1 (NUSAP1) as a novel binding partner of YAP1. The upregulation of NUSAP1 is associated with unfavorable clinical outcomes in GC patients, and NUSAP1 depletion impairs its oncogenic properties in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 functions as a positive regulator of YAP1 protein stability, thereby inducing the transcription of Hippo pathway downstream target genes, such as CTGF and CYR61. More interestingly, we find that the cancer-promoting effects of NUSAP1 on GC cell growth, migration, and invasion are mainly mediated by YAP1. Furthermore, aberrant expression of NUSAP1 and YAP1 is highly correlated in GC cell lines and tissues. We herein clarify the role of the oncogenic NUSAP1-YAP1 axis in GC tumorigenesis and progression and, therefore, provide novel therapeutic targets for GC treatment.

16.
J Exp Clin Cancer Res ; 38(1): 437, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666098

RESUMO

BACKGROUND: Circular RNAs are key regulators in human cancers, however, there is a lack of studies on circRNAs' specific functions in ovarian cancer. METHODS: Our study used qRT-PCR to detect the differentially expressed circRNAs between normal ovaries and ovarian cancer tissues. Cell function experiments were performed to verify the role of overexpression and silence of circWHSC1, including MTT assay, cell apoptosis assay, wound healing and Matrigel-coated Transwell assay. In vivo tumorigenesis model was constructed by subcutaneous injection in nude mice. Bioinformatics analysis predicted the possible binding sites of circWHSC1 with miRNAs, and confirmed with dual-luciferase reporter assay and RNA pull-down assay. The exosomes were extracted with ultracentrifugation. HE staining was also used to detect morphology of nude mice peritoneum. RESULTS: We found that circWHSC1 was up-regulated in ovarian cancer tissues, and circWHSC1 expression was higher in moderate & poor differentiation ovarian cancer tissues than in well differentiation ovarian cancer tissues. Overexpression of circWHSC1 increased cell proliferation, migration and invasion, and inhibited cell apoptosis. Silence of circWHSC1 exerted the opposite effects. Additionally, circWHSC1 could sponge miR-145 and miR-1182 and up-regulate the expression of downstream targets MUC1 and hTERT. Exosomal circWHSC1 can be transferred to peritoneal mesothelial cells and promotes peritoneal dissemination. CONCLUSIONS: Our study demonstrates the highly expressed circWHSC1 in ovarian cancer promotes tumorigenesis by sponging miR-145 and miR-1182, and its exosome forms induce tumor metastasis through acting on peritoneal mesothelium.


Assuntos
Carcinoma Epitelial do Ovário/patologia , MicroRNAs/genética , Mucina-1/genética , Neoplasias Ovarianas/patologia , RNA Circular/genética , Telomerase/genética , Animais , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Ovarianas/genética
17.
Artigo em Chinês | WPRIM | ID: wpr-995281

RESUMO

Intestinal fungal dysbiosis is closely associated with the development and progression of many diseases including tumors. The disruption of fungal communities is involved in tumorigenesis and progression through inducing aberrant host immune responses and the production of certain metabolites as well as promoting the establishment of interactions with bacteria. Fungal dysbiosis is a potential marker for early detection of digestive tumors and a factor influencing the efficacy of tumor therapy. Studying the association between gut fungi and digestive tumors may facilitate the prevention, diagnosis and treatment of digestive tumors.

18.
Oncotarget ; 8(19): 31714-31725, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28423647

RESUMO

Maternally expressed gene 3 (Meg3), a long non-coding RNA, has been reported to be associated with the pathogenesis of multiple malignancies. However, little is known regarding the role of Meg3 in epithelial ovarian cancer (EOC). In this study, we found that the expression of Meg3 was lower in epithelial ovarian carcinoma, and has potential to be considered as a biomarker for ovarian cancer. After transfecting the ovarian cancer cell lines OVCAR3 and A2780 with Meg3, phenotypic changes and autophagy-related molecules were examined. Upregulation of Meg3 inhibited cell proliferation, plate colony formation, induced cell cycle arrest in G2 phases, and promoted apoptosis. Observation of autophagosomes was performed by transmission electron microscopy. The expression levels of LC3-II, ATG3, LAMP1 were elevated, while SQSTM1/p62 expression declined. Upregulated expression of Meg3 also suppressed tumorigenesis in vivo in a xenograft mouse model through upregulating ATG3 expression. RIP (ribonucleoprotein immunoprecipitation) and RNA pull-down assays showed that Meg3 was co-immunoprecipitated with ATG3. In addition, Meg3 protected ATG3 mRNA from degradation following treatment with actinomycin D. Overall, our results suggest that the lncRNA Meg3 acts as a tumor suppressor in EOC by regulating ATG3 activity and inducing autophagy.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , Enzimas de Conjugação de Ubiquitina/genética , Animais , Apoptose/genética , Carcinoma Epitelial do Ovário , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Genes Supressores de Tumor , Humanos , Camundongos , Interferência de RNA
19.
Oncotarget ; 8(9): 14777-14793, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28146423

RESUMO

E2F1 (E2F transcription factor 1) can act as a tumor suppressor or oncogene. We report the molecular mechanism of E2F1 in ovarian carcinoma tumorigenesis and progression. E2F1 expression levels in ovarian carcinoma tissue were examined by immunohistochemistry. After E2F1 plasmid transfection and E2F1-microRNA-519d (miR-519d)/si-RhoC (Ras homolog gene family member C) co-transfection, ovarian cancer cell phenotypes and the related molecules were examined in vitro and in vivo. E2F1 was overexpressed in type I and type II ovarian carcinoma as compared to normal ovary tissues and normal fallopian tube tissues, respectively. E2F1 overexpression promoted cell proliferation, G1-S progression, survival, migration, and invasion in vitro; miR-519d or siRhoC co-transfection reversed E2F1 oncogenic effects. E2F1 overexpression promoted tumor growth in vivo; miR-519d overexpression inhibited it. E2F1 overexpression increased RhoC, Bcl-2, cyclin D1, survivin, MMP2 (matrix metalloproteinase 2), MMP9, STAT3 (signal transducer and activator of transcription 3), and HuR (ELAV-like RNA-binding protein 1) expression; miR-519d overexpression decreased their expression. E2F1 downregulated miR-519d directly and miR-519d downregulated RhoC directly. Conversely, miR-519d directly downregulated E2F1, There is a direct repressive regulatory loop between E2F1 and miR-519d. We provide evidence that E2F1/miR-519d/RhoC is a promising signaling pathway for diagnosing and treating ovarian carcinoma.


Assuntos
Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/genética , Proteínas rho de Ligação ao GTP/genética , Adolescente , Adulto , Idoso , Animais , Apoptose/genética , Western Blotting , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Adulto Jovem , Proteínas rho de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
20.
Oncotarget ; 7(19): 27538-51, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27050373

RESUMO

PURPOSE: Glycogen synthase kinase-3ß (GSK-3ß) is a serine/threonine kinase involved in cancer development. Herein, we demonstrated the role of GSK-3ß in endometrial cancer (EC) and identified new therapeutic targets. RESULTS: GSK-3ß was overexpressed in EC tissues, and was positively correlated with International Federation of Gynecology and Obstetrics (FIGO) staging, dedifferentiation, and myometrial infiltration depth. Besides, GSK-3ß overexpression predicted lower cumulative and relapse-free survival rate. si-GSK-3ß transfection suppressed cell proliferation, migration, invasion, and promoted cell apoptosis through downregulating NF-kB, Cyclin D1 and MMP9 expression whereas upregulating P21 expression. Bioinformatic predictions and dual-luciferase reporter assays showed that GSK-3ß was a possible target of miR-129. MiR-129 transfection reduced GSK-3ß expression, and exhibited the same trend as si-GSK-3ß transfection in cell function experiments. The nude mouse xenograft assay showed that miR-129 overexpression may suppress tumor growth through downregulating GSK-3ß expression. Further studies showed that AZD1080, a GSK-3ß inhibitor, could also inhibit EC cell proliferation, migration and invasion, while induced cell apoptosis through modulating relevant genes downstream of GSK-3ß signaling. EXPERIMENTAL DESIGN: GSK-3ß expression was determined in EC tissue and normal endometrial tissues by immunohistochemistry. After GSK-3ß down-regulation by si-GSK-3ß, microRNA-129 mimic transfection or GSK-3ß inhibitor exposure, EC cell phenotypes and related molecules were examined. CONCLUSIONS: Our results demonstrate for the first time that GSK-3ß may be a novel and important therapeutic target for the treatment of endometrial carcinoma. GSK-3ß inhibitor AZD1080 may be an effective drug for treating endometrial carcinoma.


Assuntos
Neoplasias do Endométrio/enzimologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Carcinogênese , Carcinoma Endometrioide/enzimologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Progressão da Doença , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/biossíntese , Glicogênio Sintase Quinase 3 beta/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa