RESUMO
The development of hydrogen (H2) gas sensors is essential for the safe and efficient adoption of H2 gas as a clean, renewable energy source in the challenges against climate change, given its flammability and associated safety risks. Among various H2 sensors, gasochromic sensors have attracted great interest due to their highly intuitive and low power operation, but slow kinetics, especially slow recovery rate limited its further practical application. This study introduces Pd-decorated amorphous WO3 nanorods (Pd-WO3 NRs) as an innovative gasochromic H2 sensor, demonstrating rapid and highly reversible color changes for H2 detection. In specific, the amorphous nanostructure exhibits notable porosity, enabling rapid detection and recovery by facilitating effective H2 gas interaction and efficient diffusion of hydrogen ions (H+) dissociated from the Pd nanoparticles (Pd NPs). The optimized Pd-WO3 NRs sensor achieves an impressive response time of 14 s and a recovery time of 1 s to 5% H2. The impressively fast recovery time of 1 s is observed under a wide range of H2 concentrations (0.2-5%), making this study a fundamental solution to the challenged slow recovery of gasochromic H2 sensors.
RESUMO
The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.
RESUMO
Aqueous ammonium ion batteries (AAIBs) have garnered significant attention due to their unique energy storage mechanism. However, their progress is hindered by the relatively low capacities of NH4 + host materials. Herein, the study proposes an electrodeposited tungsten oxide@polyaniline (WOx@PANI) composite electrode as a NH4 + host, which achieves an ultrahigh capacity of 280.3 mAh g-1 at 1 A g-1, surpassing the vast majority of previously reported NH4 + host materials. The synergistic interaction of coordination chemistry and hydrogen bond chemistry between the WOx and PANI enhances the charge storage capacity. Experimental results indicate that the strong interfacial coordination bonding (N: âW6+) effectively modulates the chemical environment of W atoms, enhances the protonation level of PANI, and thus consequently the conductivity and stability of the composites. Spectroscopy analysis further reveals a unique NH4 +/H+ co-insertion mechanism, in which the interfacial hydrogen bond network (N-H···O) accelerates proton involvement in the energy storage process and activates the Grotthuss hopping conduction of H+ between the hydrated tungsten oxide layers. This work opens a new avenue to achieving high-capacity NH4 + storage through interfacial chemistry interactions, overcoming the capacity limitations of NH4 + host materials for aqueous energy storage.
RESUMO
Dysprosium-modified tungsten oxide/carbon nanofibers (Dy-WO3/PCNFs) are fabricated via electrospinning combined with high-temperature calcination to synthesize a flexible, self-supporting electrode material that does not require a conductive agent or binder. XRD and TEM analyses showed that introducing dysprosium promoted the preferential growth of WO3 crystals along the preponderance crystal planes involved in the electrochemical reaction, enhancing the exposure of the (002) and (200) crystal planes. Furthermore, DFT calculations demonstrated that the incorporation of Dy resulted in enhanced adsorption of Dy-WO3 by PCNFs, with an adsorption energy of -1.21 eV. The Bader charge results indicate a transfer of 1.70 |e| from PCNFs to Dy-WO3. DFT calculations demonstrate that strong adsorption facilitates charge adsorption/desorption, which contributes to charge transfer and enhances storage capacity. The prepared Dy-WO3/PCNFs exhibited a high specific capacitance (557.28 F g-1 at 0.5 A g-1). Supercapacitors assembled with Dy-WO3/PCNFs as the positive electrode and CNFs as the negative electrode have high energy density (29.8 Wh kg-1 at a power density of 363.48 W kg-1). This study demonstrates the successful synthesis of Dy-WO3/PCNFs with exceptional electrochemical properties and offers significant insights into the design and application of flexible electrodes by incorporating dysprosium to modulate the crystal surface of WO3.
RESUMO
Energy-efficient glass windows are pivotal in modern infrastructure striving toward the "Zero energy" concept. Electrochromic (EC) energy storage devices emerge as a promising alternative to conventional glass, yet their widespread commercialization is impeded by high costs and dependence on external power sources. Addressing this, redox potential-based self-powered electrochromic (RP-SPEC) devices are introduced leveraging established EC materials like tungsten oxide (WO3) and vanadium-doped nickel oxide (V-NiO) along with aluminum (Al) as an anode. These devices produce open circuit voltages (OCV) exceeding ±0.3 V, enabling autonomous operation for multiple cycles. The WO3 film exhibits 1% transmission and 88% modulation in the colored state at 550 nm with a mere 260 nm thickness. The redox interactions facilitate coloring and bleaching cycles without external power, while photo-charging rejuvenates the system. Notably, the inherent voltages of the RP-SPEC device offer dual functionality, powering electronic devices for up to 81 h. Large-area (≈28 cm2) device feasibility is demonstrated, paving the way for industrial adoption. The RP-SPEC device promises to revolutionize smart window technology by offering both energy efficiency and autonomous operation, thus advancing sustainable infrastructure.
RESUMO
Nanomaterials containing tungsten (TNMs), characterized by diverse nanostructures had been extensively used in biomedical sector. Despite numerous reports focusing on TNM applications in specific biomedical areas, there is a noticeable absence of comprehensive studies that focused on detailed characterization of nanomaterials along with their biological applications. The present work described the structural, morphological, and antimicrobial properties of tungsten oxide (WO3) nanoparticles coated by antibiotics (nanobiotics), and their application on single and mixed bacterial culture. The nanobiotics included in this study were WO3 coated with ampicillin (W+A), WO3 coated with penicillin (P+W), and WO3 coated with ciprofloxacin (C+W). Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FTIR), Rrman spectroscopy, and UV-visible spectroscopy were used to characterize synthesized nanoparticles. The minimum inhibitory concentration of C+W nanobiotic against S. aureus, E. coli, and mixed culture (S. aureus +E. coli) was lower than that of P+W and A+W. The impact of incubation period showed significant differences for each of nanobiotic against S. aureus, E. coli, and mixed culture. However, there were also non-significant differences among incubation periods for antibacterial activity of nanobiotics. It was pertinent to note that percentage variation in susceptibility of S. aureus with respect to mixed culture remained higher as compared to E. coli, indicating it stronger candidate imposing resistance. This paper thus suggested the strategy of coating of antibiotics with with WO3 nanoparticles as an ideal combination for resistance modulation against single and mixed culture bacteria.
Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Óxidos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Tungstênio/farmacologia , Tungstênio/química , Escherichia coli , Staphylococcus aureus , Ciprofloxacina/farmacologia , Bactérias , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Difração de Raios XRESUMO
Here, we introduce an organic/inorganic composite hydrogel as a versatile gel electrode material. This composite hydrogel was formed by simply mixing an aqueous solution of flat microparticles of tungsten oxide, exhibiting superior water dispersibility, with a hydrogel composed of a water-soluble polyaramide-based polymer hydrogelator. The resulting composite hydrogel exhibited uniform dispersion of tungsten oxide flat particles throughout the hydrogel matrix, supplementing the structure formed by the polymer hydrogelator. It maintained the gel-forming capability and thixotropic behavior inherent to the polymer hydrogelator while showcasing the electrochemical characteristics of tungsten oxide. With its spreadability and applicability to various electrode shapes, a composite hydrogel is presented as a potential spreadable gel electrode material.
RESUMO
In the contemporary landscape of technological advancements, the burgeoning demand for portable electronics and flexible wearable devices has necessitated the development of energy storage systems with superior volumetric performance. Tungsten oxide (WO3), known for its high density and theoretical capacitance, is a promising electrode material for supercapacitors. However, low conductivity and poor cycling stability are still the key bottlenecks for its application. Herein, a novel composite comprising hollow porous WO3 spheres (HPWS) derived by template method was electrostatic self-assembled on the surface of the Ti3C2Tx nanosheets. The resulting electrodes exhibited ultra-high volumetric capacitance of 1930 F cm-3 at 1 A g-1 and rate capability of 46% at 50 A g-1, attributed to enhanced ion accessibility from microporous structure and electron transport from conductive network of Ti3C2Tx even at a high packing density of 3.86 g cm-3. Utilizing HPWS/Ti3C2Tx as the negative electrode and porous carbon as the positive electrode, the assembled asymmetric supercapacitor achieved an energy density of 31 Wh kg-1 at a power density of 650 W kg-1 with over 107% capacitance retention after 5000 cycles. This work provides a promising approach for developing next-generation supercapacitors with ultra-high volumetric capacitance.
RESUMO
In pursuing advanced neuromorphic applications, this study introduces the successful engineering of a flexible electronic synapse based on WO3-x, structured as W/WO3-x/Pt/Muscovite-Mica. This artificial synapse is designed to emulate crucial learning behaviors fundamental to in-memory computing. We systematically explore synaptic plasticity dynamics by implementing pulse measurements capturing potentiation and depression traits akin to biological synapses under flat and different bending conditions, thereby highlighting its potential suitability for flexible electronic applications. The findings demonstrate that the memristor accurately replicates essential properties of biological synapses, including short-term plasticity (STP), long-term plasticity (LTP), and the intriguing transition from STP to LTP. Furthermore, other variables are investigated, such as paired-pulse facilitation, spike rate-dependent plasticity, spike time-dependent plasticity, pulse duration-dependent plasticity, and pulse amplitude-dependent plasticity. Utilizing data from flat and differently bent synapses, neural network simulations for pattern recognition tasks using the Modified National Institute of Standards and Technology dataset reveal a high recognition accuracy of â¼95% with a fast learning speed that requires only 15 epochs to reach saturation.
Assuntos
Redes Neurais de Computação , Plasticidade Neuronal , Óxidos , Tungstênio , Tungstênio/química , Plasticidade Neuronal/fisiologia , Óxidos/química , Sinapses Elétricas/fisiologia , Titânio/química , Aprendizagem , Sinapses/fisiologiaRESUMO
Modern chemical production processes often emit complex mixtures of gases, including hazardous pollutants such as NO2. Although widely used, gas sensors based on metal oxide semiconductors such as WO3 respond to a wide range of interfering gases other than NO2. Consequently, developing WO3 gas sensors with high NO2 selectivity is challenging. In this study, a simple one-step hydrothermal method was used to prepare WO3 nanorods modified with black phosphorus (BP) flakes as sensitive materials for NO2 sensing, and BP-WO3-based micro-electromechanical system gas sensors were fabricated. The characterization of the as-prepared BP-WO3 composite through X-ray diffraction scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the successful formation of the sandwich-like nanostructures. The result of gas-sensing tests with 2-14 ppm NO2 indicated that the sensor response was 1.25-2.21 with response-recovery times of 36 and 36 s, respectively, at 190 °C. In contrast to pure WO3, which exhibited a response of 1.07-2.2 to 0.3-5 ppm H2S at 160 °C, BP-WO3 showed almost no response to H2S. Thus, compared with pure WO3, BP-WO3 exhibited significantly improved NO2 selectivity. Overall, the BP-WO3 composite with sandwich-like nanostructures is a promising material for developing highly selective NO2 sensors for practical applications.
RESUMO
Mass storage and removal in solids always play a vital role in technological applications such as modern batteries and neuronal computations. However, they were kinetically limited by the slow diffusional process in the lattice, which made it challenging to fabricate applicable conductors with high electronic and ionic conductivities at room temperature. Here, we proposed an acid solution/WO3/ITO sandwich structure and achieved ultrafast H transport in the WO3 layer by interfacial job-sharing diffusion, which means the spatially separated transport of the H+ and e- in different layers. From the color change of WO3, the effective diffusion coefficient (Deff) was estimated, dramatically increasing ≤106 times and overwhelming values from previous reports. The experiments and simulations also revealed the universality of extending this approach to other atoms and oxides, which could stimulate systematic studies of ultrafast mixed conductors in the future.
RESUMO
The potential of 2D materials in future CMOS technology is hindered by the lack of high-performance p-type field effect transistors (p-FETs). While utilization of the top-gate (TG) structure with a p-doped spacer area offers a solution to this challenge, the design and device processing to form gate stacks pose serious challenges in realization of ideal p-FETs and PMOS inverters. This study presents a novel approach to address these challenges by fabricating lateral p+-p-p+ junction WSe2 FETs with self-aligned TG stacks in which desired junction is formed by van der Waals (vdW) integration and selective oxygen plasma-doping into spacer regions. The exceptional electrostatic controllability with a high on/off current ratio and small subthreshold swing (SS) of plasma doped p-FETs is achieved with the self-aligned metal/hBN gate stacks. To demonstrate the effectiveness of our approach, we construct a PMOS inverter using this device architecture, which exhibits a remarkably low power consumption of approximately 4.5 nW.
RESUMO
Topological textures of ferroelectric polarizations have promise as alternative devices for future information technology. A polarization rotation inevitably deviates from the stable orientation in axial ferroelectrics, but local energy losses compromise the global symmetry, resulting in a distorted shape of the topological vortex or inhibiting the vortex. Easy planar isotropy helps to promote rotating structures and, accordingly, to facilitate access to nontrivial textures. Here, we investigate the domain structure of an epitaxial thin film of bismuth tungsten oxide (Bi2WO6) grown on a (001) SrTiO3 substrate. By using angle-resolved piezoresponse force microscopy and scanning transmission electron microscopy, we find the existence of a hidden phase with ⟨100⟩-oriented ferroelectric polarizations in the middle of the four variant ⟨110⟩-oriented polarization domains, which assists in the formation of flux closure domains. The results suggest that this material is one step closer to becoming an isotropic two-dimensional polar material.
RESUMO
The development of photoelectrochemical tandem cells for water splitting with electrodes entirely based on metal oxides is hindered by the scarcity of stable p-type oxides and the poor stability of oxides in strongly alkaline and, particularly, strongly acidic electrolytes. As a novelty in the context of transition metal oxide photoelectrochemistry, a bias-free tandem cell driven by simulated sunlight and based on a CuCrO2 photocathode and a WO3 photoanode, both unprotected and free of co-catalysts, is demonstrated to split water while working with strongly acidic electrolytes. Importantly, the Faradaic efficiency for H2 evolution for the CuCrO2 electrode is found to be about 90%, among the highest for oxide photoelectrodes in the absence of co-catalysts. The tandem cell shows no apparent degradation in short-to-medium-term experiments. The prospects of using a practical cell based on this configuration are discussed, with an emphasis on the importance of modifying the materials for enhancing light absorption.
RESUMO
In this work, a surface dispersed heterojunction of BiVO4-nanoparticle@WO3-nanoflake was successfully prepared by hydrothermal combined with solvothermal method. We optimized the morphology of the WO3 nanoflakes and BiVO4 nanoparticles by controlling the synthesis conditions to get the uniform BiVO4 loaded on the surface of WO3 arrays. The phase composition and morphology evolution with different reaction precursors were investigated in detail. When used as photoanodes, the WO3/BiVO4 composite exhibits superior activity with photocurrent at 3.53 mA cm-2 for photoelectrochemical (PEC) water oxidation, which is twice that of pure WO3 photoanode. The superior surface dispersion structure of the BiVO4-nanoparticle@WO3-nanoflake heterojunction ensures a large effective heterojunction area and relieves the interfacial hole accumulation at the same time, which contributes to the improved photocurrents together with the stability of the WO3/BiVO4 photoanodes.
RESUMO
Reasonably designing highly active, environmentally friendly, and cost-effective catalysts for efficient elimination of pollutants from water is desirable but challenging. Herein, an efficient heterogeneous photo-Fenton catalyst tourmaline (TM)/tungsten oxide (WO3-x) (named TW10) containing tungsten/boron/iron (W/B/Fe) synergistic active centers and 90% of cheap natural tourmaline (TM) mineral rich in Fe and B elements. The TW10 catalyst can quickly activate peroxymonosulfate (PMS) to generate massive active free radicals, which may induce the rapid and efficient degradation of tetracycline (TC). The TW10/PMS/Visible light system can effectively degrade up to 98.7% of tetracycline (TC) in actual waters (i.e. seawater, Yellow River, and Yangtze River water), and the catalytic degradation rates reach 1.65, 5.569, and 2.38 times higher than those of TM, WO3-x, and commercial P25 (Degussa, Germany), respectively. In addition, the catalyst can be recycled and reused multiple times. Electron spin resonance spectroscopy (EPR), X-ray photoelectron spectroscopy (XPS), and liquid chromatograph-mass spectrometer (LC-MS) analyses confirm that the synergistic catalytic effect of W/B/Fe sites on the TW10 catalyst accelerates the electron transfer between Fe(II) and Fe(III), as well as between W(V) and W(VI), and thus promotes the rapid degradation of TC. The catalytic reaction mechanism and degradation pathway of TC were explored. This work provides a feasible route for the design and development of new eco-friendly and efficient catalyst.
Assuntos
Antibacterianos , Compostos Férricos , Silicatos , Tetraciclina , Água , PeróxidosRESUMO
Crystalline tungsten trioxide (WO3 ) thin films covered by noble metal (gold and platinum) nanoparticles are synthesized via wet chemistry and used as optical sensors for gaseous hydrogen. Sensing performances are strongly influenced by the catalyst used, with platinum (Pt) resulting as best. Surprisingly, it is found that gold (Au) can provide remarkable sensing activity that tuned out to be strongly dependent on the nanoparticle size: devices sensitized with smaller nanoparticles display better H2 sensing performance. Computational insight based on density functional theory calculations suggested that this can be related to processes occurring specifically at the Au nanoparticle-WO3 interface (whose extent is in fact dependent on the nanoparticle size), where the hydrogen dissociative adsorption turns out to be possible. While both experiments and calculations single out Pt as better than Au for sensing, the present work reveals how an exquisitely nanoscopic effect can yield unexpected sensing performance for Au on WO3 , and how these performances can be tuned by controlling the nanoscale features of the system.
RESUMO
Tungsten oxide (WO3 ) is an appealing electrocatalyst for the hydrogen evolution reaction (HER) owing to its cost-effectiveness and structural adjustability. However, the WO3 electrocatalyst displays undesirable intrinsic activity for the HER, which originates from the strong hydrogen adsorption energy. Herein, for effective defect engineering, a hydrogen atom inserted into the interstitial lattice site of tungsten oxide (H0.23 WO3 ) is proposed to enhance the catalytic activity by adjusting the surface electronic structure and weakening the hydrogen adsorption energy. Experimentally, the H0.23 WO3 electrocatalyst is successfully prepared on reduced graphene oxide. It exhibits significantly improved electrocatalytic activity for HER, with a low overpotential of 33 mV to drive a current density of 10 mA cm-2 and ultra-long catalytic stability at high-throughput hydrogen output (200 000 s, 90 mA cm-2 ) in acidic media. Theoretically, density functional theory calculations indicate that strong interactions between interstitial hydrogen and lattice oxygen lower the electron density distributions of the d-orbitals of the active tungsten (W) centers to weaken the adsorption of hydrogen intermediates on W-sites, thereby sufficiently promoting fast desorption from the catalyst surface. This work enriches defect engineering to modulate the electron structure and provides a new pathway for the rational design of efficient catalysts for HER.
RESUMO
Developing anode catalysts with substantially enhanced activity for hydrogen oxidation reaction (HOR) and CO tolerance performance is of great importance for the commercial applications of proton exchange membrane fuel cells (PEMFCs). Herein, an excellent CO-tolerant catalyst (Pd-WO3 /C) has been fabricated by loading Pd nanoparticles on WO3 via an immersion-reduction route. A remarkably high power density of 1.33 W cm-2 at 80 °C is obtained by using the optimized 3Pd-WO3 /C as the anode catalyst of PEMFCs, and the moderately reduced power density (73% remained) in CO/H2 mixed gas can quickly recover after removal of CO-contamination from hydrogen fuel, which is not possible by using Pt/C or Pd/C as anode catalyst. The prominent HOR activity of 3Pd-WO3 /C is attributed to the optimized interfacial electron interaction, in which the activated H* adsorbed on Pd species can be effectively transferred to WO3 species through hydrogen spillover effect and then oxidized through the H species insert/output effect during the formation of Hx WO3 in acid electrolyte. More importantly, a novel synergetic catalytic mechanism about excellent CO tolerance is proposed, in which Pd and WO3 respectively absorbs/activates CO and H2 O, thus achieving the CO electrooxidation and re-exposure of Pd active sites for CO-tolerant HOR.
RESUMO
In the process of radiation therapy (RT), the cytotoxic effects of excited electrons generated from water radiolysis tend to be underestimated due to multiple biochemical factors, particularly the recombination between electrons and hydroxyl radicals (·OH). To take better advantage of radiolytic electrons, we constructed WO3 nanocapacitors that reversibly charge and discharge electrons to regulate electron transportation and utilization. During radiolysis, WO3 nanocapacitors could contain the generated electrons that block electron-·OH recombination and contribute to the yield of ·OH at a high level. These contained electrons could be discharged from WO3 nanocapacitors after radiolysis, resulting in the consumption of cytosolic NAD+ and impairment of NAD+-dependent DNA repair. Overall, this strategy of nanocapacitor-based radiosensitization improves the radiotherapeutic effects by increasing the utilization of radiolytic electrons and ·OH, warranting further validation in multiple tumour models and preclinical experiments.