Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Fish Shellfish Immunol ; 144: 109274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072135

RESUMO

Interferon-gamma (IFN-γ) is an inflammatory cytokine that plays a crucial role in regulating both innate and cell-mediated immune responses by binding to a receptor complex made up of IFNGR1 and IFNGR2. In this study, the complete cDNA of IFN-γ and IFNGR1 from Nibea albiflora were cloned and functionally characterized (named NaIFN-γ and NaIFNGR1), whose complete cDNA sequences were 1593 bp and 2792 bp, encoding 201 and 399 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that the concluded amino acids sequences of NaIFN-γ and NaIFNGR1 shared high identity with their teleost orthologues including the IFN-γ signature and nuclear localization signal (NLS) motif in NaIFN-γ and FN Ⅲ domain in NaIFNGR1. Real-time PCR showed that NaIFN-γ and NaIFNGR1 constitutively expressed in all tested tissues, such as the head-kidney, spleen, liver, kidney, gill, muscle, blood, and intestine with the highest expression of NaIFN-γ and NaIFNGR1 appearing in the liver and gill, respectively. After experiencing stimulation with Polyinosinic-polycytidylic acid (Poly (I:C)), Vibrio alginolyticus (V. alginolyticus) or Vibrio parahaemolyticus (V. parahaemolyticus), NaIFN-γ and NaIFNGR1 mRNA were up-regulated with the time-dependent model. Due to the presence of a nuclear localization signal (NLS), the subcellular localization revealed that NaIFN-γ dispersed throughout the cytoplasm and nucleus. NaIFNGR1, as a member of Cytokine receptor family B, was primarily expressed on the cell membrane. When NaIFN-γ and NaIFNGR1 were co-transfected, their fluorescence signals overlapped on the membrane of HEK 293T cells indicating the potential interaction between IFN-γ and IFNGR1. The GST-pull-down results further showed that NaIFN-γ could directly interact with the extracellular region of NaIFNGR1, further confirming the affinity between IFN-γ and IFNGR1. Taken together, the results firstly demonstrated that the NaIFN-γ ligand-receptor system existed in N.albiflora and played a pivotal part in N.albiflora's immune response against pathogenic bacterial infections, which contributed to the better understanding of the role of IFN-γ in the immunomodulatory mechanisms of teleost.


Assuntos
Interferon gama , Perciformes , Animais , Sinais de Localização Nuclear/genética , Sequência de Aminoácidos , Filogenia , DNA Complementar , Aminoácidos/genética
2.
BMC Genomics ; 24(1): 374, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403010

RESUMO

BACKGROUND: Cancer-cachexia (CC) is a debilitating condition affecting up to 80% of cancer patients and contributing to 40% of cancer-related deaths. While evidence suggests biological sex differences in the development of CC, assessments of the female transcriptome in CC are lacking, and direct comparisons between sexes are scarce. This study aimed to define the time course of Lewis lung carcinoma (LLC)-induced CC in females using transcriptomics, while directly comparing biological sex differences. RESULTS: We found the global gene expression of the gastrocnemius muscle of female mice revealed biphasic transcriptomic alterations, with one at 1 week following tumor allograft and another during the later stages of cachexia development. The early phase was associated with the upregulation of extracellular-matrix pathways, while the later phase was characterized by the downregulation of oxidative phosphorylation, electron transport chain, and TCA cycle. When DEGs were compared to a known list of mitochondrial genes (MitoCarta), ~ 47% of these genes were differently expressed in females exhibiting global cachexia, suggesting transcriptional changes to mitochondrial gene expression happens concomitantly to functional impairments previously published. In contrast, the JAK-STAT pathway was upregulated in both the early and late stages of CC. Additionally, we observed a consistent downregulation of Type-II Interferon signaling genes in females, which was associated with protection in skeletal muscle atrophy despite systemic cachexia. Upregulation of Interferon signaling was noted in the gastrocnemius muscle of cachectic and atrophic male mice. Comparison of female tumor-bearing mice with males revealed ~ 70% of DEGs were distinct between sexes in cachectic animals, demonstrating dimorphic mechanisms of CC. CONCLUSION: Our findings suggest biphasic disruptions in the transcriptome of female LLC tumor-bearing mice: an early phase associated with ECM remodeling and a late phase, accompanied by the onset of systemic cachexia, affecting overall muscle energy metabolism. Notably, ~ 2/3 of DEGs in CC are biologically sex-specific, providing evidence of dimorphic mechanisms of cachexia between sexes. Downregulation of Type-II Interferon signaling genes appears specific to CC development in females, suggesting a new biological sex-specific marker of CC not reliant on the loss of muscle mass, that might represent a protective mechanism against muscle loss in CC in female mice.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Feminino , Masculino , Camundongos , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Transcriptoma , Interferons/metabolismo
3.
Cytokine ; 161: 156075, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323190

RESUMO

Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.


Assuntos
Neoplasias Colorretais , Interferons , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/patologia , Imunoterapia , Neoplasias Hepáticas/secundário , Microambiente Tumoral
4.
Tohoku J Exp Med ; 260(3): 263-271, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37081619

RESUMO

Tumor necrosis factor-α (TNF-α) blocking therapy is recommended to treat ankylosing spondylitis for patients who fail to respond to nonsteroidal anti-inflammatory drugs (NSAIDs). Herein, we attempt to dissect whether blood type I and II interferon (IFN) production can be predictive of ankylosing spondylitis progression and treatment response to the tumor necrosis factor inhibitor (TNFi). A total of 50 ankylosing spondylitis patients receiving originator TNFi with a 6-month period were retrospectively analyzed. The patients who reached the Assessment of SpondyloArthritis international Society 40 (ASAS40) response at the 6-month interval were classified as responders (n = 29) to TNFi treatment, otherwise as non-responders (n = 21). The serum type I IFN activity, and the serum levels of IFN-α and IFN-γ in the patients at baseline were notably greater than the healthy controls. Pearson correlation analysis showed positive correlations in the patients between the serum type I IFN activity or the serum levels of IFN-α and IFN-γ, and BASDAI scores, ASDASCRP or pro-inflammatory factor production. The responders were demonstrated with reduced serum type I IFN activity concomitant with lower serum levels of IFN-α and IFN-γ compared to the non-responders after anti-TNF treatment. The serum type I IFN activity, and the serum levels of IFN-α and IFN-γ used as a test to predict responders and non-responders to anti-TNF treatment produced an area under the curve (AUC) of 0.837, 0.814, and 0.787, respectively. In conclusion, the study demonstrates that blood type I and II IFN production may be correlated with disease activity, inflammatory cytokine production, and indicative of unsatisfying response to TNFi treatment in ankylosing spondylitis patients.


Assuntos
Antirreumáticos , Espondilite Anquilosante , Humanos , Espondilite Anquilosante/tratamento farmacológico , Fator de Necrose Tumoral alfa , Interferon gama , Estudos Retrospectivos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Antirreumáticos/uso terapêutico , Resultado do Tratamento
5.
J Allergy Clin Immunol ; 150(4): 955-964.e16, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35182547

RESUMO

BACKGROUND: Inflammatory phenomena such as hyperinflammation or hemophagocytic lymphohistiocytosis are a frequent yet paradoxical accompaniment to virus susceptibility in patients with impairment of type I interferon (IFN-I) signaling caused by deficiency of signal transducer and activator of transcription 2 (STAT2) or IFN regulatory factor 9 (IRF9). OBJECTIVE: We hypothesized that altered and/or prolonged IFN-I signaling contributes to inflammatory complications in these patients. METHODS: We explored the signaling kinetics and residual transcriptional responses of IFN-stimulated primary cells from individuals with complete loss of one of STAT1, STAT2, or IRF9 as well as gene-edited induced pluripotent stem cell-derived macrophages. RESULTS: Deficiency of any IFN-stimulated gene factor 3 component suppressed but did not abrogate IFN-I receptor signaling, which was abnormally prolonged, in keeping with insufficient induction of negative regulators such as ubiquitin-specific peptidase 18 (USP18). In cells lacking either STAT2 or IRF9, this late transcriptional response to IFN-α2b mimicked the effect of IFN-γ. CONCLUSION: Our data suggest a model wherein the failure of negative feedback of IFN-I signaling in STAT2 and IRF9 deficiency leads to immune dysregulation. Aberrant IFN-α receptor signaling in STAT2- and IRF9-deficient cells switches the transcriptional output to a prolonged, IFN-γ-like response and likely contributes to clinically overt inflammation in these individuals.


Assuntos
Interferon Tipo I , Fator IX , Humanos , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Interferon-alfa , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Ubiquitina Tiolesterase , Proteases Específicas de Ubiquitina
6.
Brain Behav Immun ; 101: 153-164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998939

RESUMO

Interferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions. To close the gap between basic research, behavioral implications and clinical applicability, knowledge of the mechanism behind IFN-γ related changes in brain function is crucial. Here, we studied the underlying mechanism of acutely augmented neocortical inhibition by IFN-γ (1.000 IU ml-1) in layer 5 pyramidal neurons of male Wistar rats. We demonstrate postsynaptic mediation of IFN-γ augmented inhibition by pressure application of GABA and analysis of paired pulse ratios. IFN-γ increases membrane presence of GABAAR γ2, as quantified by cell surface biotinylation and functional synaptic GABAAR number, as determined by peak-scaled non-stationary noise analysis. The increase in functional receptor number was comparable to the increase in underlying miniature inhibitory postsynaptic current (mIPSC) amplitudes. Blockage of putative intracellular mediators, namely phosphoinositide 3-kinase and protein kinase C (PKC) by Wortmannin and Calphostin C, respectively, revealed PKC-dependency of the pro-inhibitory IFN-γ effect. This was corroborated by increased serine phosphorylation of P-serine PKC motifs on GABAAR γ2 upon IFN-γ application. GABAAR single channel conductance, intracellular chloride levels and GABAAR driving force are unlikely to contribute to the effect, as shown by single channel recordings and chloride imaging. The effect of IFN-γ on mIPSC amplitudes was similar in female and male rats, suggesting a gender-independent mechanism of action. Collectively, these results indicate a novel mechanism for the regulation of inhibition by IFN-γ, which could impact on neocortical function and therewith behavior.


Assuntos
Neocórtex , Receptores de GABA-A , Animais , Cloretos/metabolismo , Feminino , Interferon gama/metabolismo , Interferon gama/farmacologia , Masculino , Neocórtex/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Serina/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Clin Invest Med ; 44(2): E5-18, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152702

RESUMO

PURPOSE: This literature review summarizes the main immunological characteristics of type III interferons (IFN) and highlights the clinically relevant aspects and future therapeutic perspectives for these inflammatory molecules. SOURCE: Relevant articles in PubMed MEDLINE from the first publication (2003) until 2020. N=101 articles were included in this review. PRINCIPAL FINDINGS: Type III IFNs represent a relatively newly described inflammatory cytokine family. Although they induce substantially similar signalling to the well-known type I IFNs, significant functional differences make these molecules remarkable. Type III IFNs have extensive biological effects, contributing to the pathogenesis of several diseases and also offering new diagnostic and therapeutic approaches: 1) their potent anti-viral properties make them promising therapeutics against viral hepatitis and even against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the current coronavirus disease 2019 (COVID-19) pandemic; 2) imbalances in the IFN-λs contribute to several forms of chronic inflammation (e.g., systemic and organ-specific autoimmune diseases) and potentially predict disease progression and therapeutic response to biologic therapies; and 3) the antitumor properties of the type III IFNs open up new therapeutic perspectives against malignant diseases. CONCLUSION: Over the last 18 years, researchers have gathered extensive information about the presence and role of these versatile inflammatory cytokines in human diseases, but further research is needed to clarify the mechanistic background of those observations. Better understanding of their biological activities will permit us to use type III IFNs more efficiently in new diagnostic approaches and individualized therapies, consequently improving patient care.


Assuntos
COVID-19/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Interferons/fisiologia , Animais , Antivirais/farmacologia , Doenças Autoimunes/metabolismo , Infecções Bacterianas/metabolismo , Progressão da Doença , Humanos , Interferon gama/metabolismo , Micoses/metabolismo , SARS-CoV-2 , Transdução de Sinais , Interferon lambda
8.
Clin Immunol ; 200: 1-9, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576845

RESUMO

Memory B cells are increased in systemic lupus erythematosus (SLE) cases, but the qualitative abnormalities and induction mechanism of these cells are unclear. Here, we subclassified B cells by their chemokine receptor expression and investigated their induction mechanism. The peripheral blood of patients with SLE showed higher levels of CXCR5- and CXCR3+ B cells. CXCR5-CXCR3+ B cell levels were elevated in patients with active SLE, which decreased with improving disease conditions. Interferon (IFN)-γ stimulation increased CXCR3 expression, whereas IFN-ß stimulation reduced CXCR5 expression in B cells. Furthermore, CXCR5-CXCR3+ B cells were induced by a combination of IFN-ß and IFN-γ stimulation. Renal tissue examination of patients with active lupus nephritis confirmed the presence of CD19+CXCR3+ B cells. Collectively, the results revealed qualitative abnormalities accompanying reduced CXCR5 expression via type I IFN and enhanced CXCR3 expression via type II IFN in SLE, suggesting their involvement in B cell infiltration into tissues and inflammatory pathogenesis.


Assuntos
Linfócitos B/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Receptores CXCR3/metabolismo , Receptores CXCR5/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD19/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Memória Imunológica/imunologia , Interferon beta/imunologia , Interferon beta/farmacologia , Interferon gama/imunologia , Interferon gama/farmacologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Quimiocinas/metabolismo , Índice de Gravidade de Doença , Adulto Jovem
9.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343571

RESUMO

Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA (siRNA)-based knockdown of CK1α repressed the degradation processes of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating conditions favorable for viral propagation. Therefore, the study uncovers a new immune-evasive pathway of influenza virus.IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans, causing seasonal and pandemic influenza. Upon infection, innate and adaptive immunity, such as the interferon (IFN) response, is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses, although the detailed mechanisms need to be elucidated. In the present study, we show that IAV HA induces the degradation of the type II IFN receptor IFNGR1 and thereby substantially attenuates cellular responses to IFN-γ. Of note, a cellular kinase, casein kinase 1α (CK1α), is crucial for IAV HA-induced degradation of both IFNGR1 and IFNAR1. Accordingly, CK1α is proven to positively regulate IAV propagation. Thus, this study unveils a novel strategy employed by IAV to evade IFN-mediated antiviral activities. These findings may provide new insights into the interplay between IAV and host immunity to impact influenza virus pathogenicity.


Assuntos
Caseína Quinase I/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Evasão da Resposta Imune , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Proteólise , Receptor de Interferon alfa e beta/imunologia , Receptores de Interferon/imunologia , Células A549 , Animais , Caseína Quinase I/genética , Chlorocebus aethiops , Cães , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/patologia , Células Madin Darby de Rim Canino , Proteína Quinase D2 , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Receptor de Interferon alfa e beta/genética , Receptores de Interferon/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Células Vero , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Receptor de Interferon gama
10.
Fish Shellfish Immunol ; 90: 150-164, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028897

RESUMO

Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , Interferon gama/genética , Animais , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Peixes/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo
11.
Mol Ther ; 26(1): 56-69, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175158

RESUMO

Oncolytic viruses (OV) are an emerging class of anticancer bio-therapeutics that induce antitumor immunity through selective replication in tumor cells. However, the efficacy of OVs as single agents remains limited. We introduce a strategy that boosts the therapeutic efficacy of OVs by combining their activity with immuno-modulating, small molecule protein tyrosine phosphatase inhibitors. We report that vanadium-based phosphatase inhibitors enhance OV infection in vitro and ex vivo, in resistant tumor cell lines. Furthermore, vanadium compounds increase antitumor efficacy in combination with OV in several syngeneic tumor models, leading to systemic and durable responses, even in models otherwise refractory to OV and drug alone. Mechanistically, this involves subverting the antiviral type I IFN response toward a death-inducing and pro-inflammatory type II IFN response, leading to improved OV spread, increased bystander killing of cancer cells, and enhanced antitumor immune stimulation. Overall, we showcase a new ability of vanadium compounds to simultaneously maximize viral oncolysis and systemic anticancer immunity, offering new avenues for the development of improved immunotherapy strategies.


Assuntos
Vetores Genéticos/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Compostos de Vanádio/farmacologia , Animais , Biomarcadores , Quimiocina CXCL9/metabolismo , Terapia Combinada , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Humanos , Imunoterapia , Mediadores da Inflamação/metabolismo , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Mortalidade , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100611

RESUMO

Type I interferon (IFN) signaling engenders an antiviral state that likely plays an important role in constraining HIV-1 transmission and contributes to defining subsequent AIDS pathogenesis. Type II IFN (IFN-γ) also induces an antiviral state but is often primarily considered to be an immunomodulatory cytokine. We report that IFN-γ stimulation can induce an antiviral state that can be both distinct from that of type I interferon and can potently inhibit HIV-1 in primary CD4+ T cells and a number of human cell lines. Strikingly, we find that transmitted/founder (TF) HIV-1 viruses can resist a late block that is induced by type II IFN, and the use of chimeric IFN-γ-sensitive/resistant viruses indicates that interferon resistance maps to the env gene. Simultaneously, in vitro evolution also revealed that just a single amino acid substitution in the envelope can confer substantial resistance to IFN-mediated inhibition. Thus, the env gene of transmitted HIV-1 confers resistance to a late block that is phenotypically distinct from blocks previously described to be resisted by env and is therefore mediated by unknown IFN-γ-stimulated factor(s) in human CD4+ T cells and cell lines. This important unidentified block could play a key role in constraining HIV-1 transmission.IMPORTANCE The human immune system can hinder invading pathogens through interferon (IFN) signaling. One consequence of this signaling is that cells enter an antiviral state, increasing the levels of hundreds of defenses that can inhibit the replication and spread of viruses. The majority of HIV-1 infections result from a single virus particle (the transmitted/founder) that makes it past these defenses and colonizes the host. Thus, the founder virus is hypothesized to be a relatively interferon-resistant entity. Here, we show that certain HIV-1 envelope genes have the unanticipated ability to resist specific human defenses mediated by different types of interferons. Strikingly, the envelope gene from a founder HIV-1 virus is far better at evading these defenses than the corresponding gene from a common HIV-1 lab strain. Thus, these defenses could play a role in constraining the transmission of HIV-1 and may select for transmitted viruses that are resistant to this IFN-mediated inhibition.


Assuntos
HIV-1/imunologia , Interferon gama/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Análise Mutacional de DNA , Células HEK293 , HIV-1/genética , Humanos , Cultura Primária de Células , Internalização do Vírus , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
13.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468880

RESUMO

Severe complications of Zika virus (ZIKV) infection might be caused by inflammation, but how ZIKV induces proinflammatory cytokines is not understood. In this study, we show opposite regulatory effects of the ZIKV NS5 protein on interferon (IFN) signaling. Whereas ZIKV and its NS5 protein were potent suppressors of type I and type III IFN signaling, they were found to activate type II IFN signaling. Inversely, IFN-γ augmented ZIKV replication. NS5 interacted with STAT2 and targeted it for ubiquitination and degradation, but it had no influence on STAT1 stability or nuclear translocation. The recruitment of STAT1-STAT2-IRF9 to IFN-ß-stimulated genes was compromised when NS5 was expressed. Concurrently, the formation of STAT1-STAT1 homodimers and their recruitment to IFN-γ-stimulated genes, such as the gene encoding the proinflammatory cytokine CXCL10, were augmented. Silencing the expression of an IFN-γ receptor subunit or treatment of ZIKV-infected cells with a JAK2 inhibitor suppressed viral replication and viral induction of IFN-γ-stimulated genes. Taken together, our findings provide a new mechanism by which the ZIKV NS5 protein differentially regulates IFN signaling to facilitate viral replication and cause diseases. This activity might be shared by a group of viral IFN modulators.IMPORTANCE Mammalian cells produce three types of interferons to combat viral infection and to control host immune responses. To replicate and cause diseases, pathogenic viruses have developed different strategies to defeat the action of host interferons. Many viral proteins, including the Zika virus (ZIKV) NS5 protein, are known to be able to suppress the antiviral property of type I and type III interferons. Here we further show that the ZIKV NS5 protein can also boost the activity of type II interferon to induce cellular proteins that promote inflammation. This is mediated by the differential effect of the ZIKV NS5 protein on a pair of cellular transcription factors, STAT1 and STAT2. NS5 induces the degradation of STAT2 but promotes the formation of STAT1-STAT1 protein complexes, which activate genes controlled by type II interferon. A drug that specifically inhibits the IFN-γ receptor or STAT1 shows an anti-ZIKV effect and might also have anti-inflammatory activity.


Assuntos
Interferon gama/metabolismo , Proteínas não Estruturais Virais/imunologia , Zika virus/imunologia , Linhagem Celular , Humanos , Ligação Proteica , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais
14.
Fish Shellfish Immunol ; 71: 275-285, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29017941

RESUMO

Interferon gamma (IFN-γ) has important roles in both innate and adaptive immune responses. This cytokine plays a very important role in defining Th1 immune response in all vertebrates. In the present study, we identified and isolated for the first time the gene coding for Nile tilapia (Oreochromis niloticus) IFNγ from spleen lymphocytes. The isolated tilapia IFNγ has between 24 and 62% of amino acid identity as compared to reported sequences for other teleost fishes. It has close phylogenetic relationships with IFNγ molecules belonging to the group of Perciforms and presents the typical structural characteristics of gamma interferon molecules. The tissue expression analysis showed that IFNγ is expressed constitutively in head kidney, skin, intestine, muscle and brain. Its expression was not detected in gills by conventional RT-PCR. However, under conditions of stimulation with Poly I:C and LPS, IFNγ expression was up-regulated in gills after 24 h post-stimulation. IFNγ expression was also induced in gills 24 h after Edwardsiella tarda infection suggesting its important role in immunity against intracellular bacteria. The recombinant protein produced in Escherichia coli induced Mx gene transcription in head kidney primary culture cells. These results are the first steps to characterize the role of tilapia IFNγ in the defense against pathogens in tilapia. Furthermore, the isolation of this molecule provides a new tool to characterize the cellular immune response to various stimuli in this organism.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Interferon gama/genética , Interferon gama/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Interferon gama/química , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária
15.
Fish Shellfish Immunol ; 65: 103-110, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28373105

RESUMO

Two members of type II IFNs have been identified in fish, i.e. an IFN-γ gene as in other vertebrates and a unique IFN-γ related (IFN-γ rel) gene being solely present in fish. However, the signalling pathways involved in the down-stream signalling of type II IFNs in fish remains poorly described. In this study, the type II IFNs mediated IRF1 was investigated in zebrafish, and the true homologous gene of mammalian IRF1 in fish was revealed despite the report of so-called IRF1a and IRF1b in zebrafish. As revealed in overexpression analysis, zebrafish IFN-γ had a higher induction ability than IFN-γ rel in relation with the expression of IRF1. IFN-γ stimulated the expression level of STAT1a and also STAT1b, but they had opposite trends with the increase of time; enhancement of STAT1a waned after 12 h post injection of plasmids; whereas STAT1b expression increased continuously. Zebrafish IRF1 gene promoter contained several putative transcription factor binding sites, including GAS and NF-κB motifs. Luciferase assay revealed that the GAS site was essential in the IFN-γ triggered IRF1 expression. In contrast, IRF11 contained neither GAS nor NF-κB elements, and did not respond to IFN-γ induction. It is considered that STAT1a and STAT1b are structurally and functionally similar to STAT1α and STAT1ß in mammal respectively, and that IRF11, although used to be nominated as IRF1a, is not the orthologue of mammalian IRF1, but IRF1b in zebrafish should be the orthologue.


Assuntos
Proteínas de Peixes/genética , Fatores Reguladores de Interferon/genética , Interferons/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Linhagem Celular , Cyprinidae , Proteínas de Peixes/metabolismo , Fatores Reguladores de Interferon/metabolismo , Interferons/metabolismo , Luciferases/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transdução de Sinais , Fatores de Transcrição , Regulação para Cima , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo
16.
J Autoimmun ; 63: 47-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26183766

RESUMO

Both type I and II interferons (IFNs) have been implicated in the pathogenesis of Sjogren's syndrome (SS). We aimed to explore the contribution of type I and II IFN signatures in the generation of distinct SS clinical phenotypes including lymphoma development. Peripheral blood (PB) from SS patients (n = 31), SS patients complicated by lymphoma (n = 13) and healthy controls (HC, n = 30) were subjected to real-time PCR for 3 interferon inducible genes (IFIGs) preferentially induced by type I IFN, 2 IFIGs preferentially induced by IFNγ as well as for IFNα and IFNγ genes. The same analysis was performed in minor salivary gland tissues (MSG) derived from 31 SS patients, 10 SS-lymphoma patients and 17 sicca controls (SC). In PB and MSG tissues, overexpression of both type I and type II IFIGs was observed in SS patients versus HC and SC, respectively, with a predominance of type I IFN signature in PB and a type II IFN signature in MSG tissues. In SS-lymphoma MSG tissues, lower IFNα, but higher IFNγ and type II IFIG transcripts compared to both SS and SC were observed. In receiver operating characteristic curve analysis, IFNγ/IFNα mRNA ratio in MSG tissues showed the best discrimination for lymphoma development. Discrete expression patterns of type I and II IFN signatures might be related to distinct SS clinical phenotypes. Additionally, IFNγ/IFNα mRNA ratio in diagnostic salivary gland biopsies is proposed as a novel histopathological biomarker for the prediction of in situ lymphoma development in the setting of SS.


Assuntos
Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Linfoma/etiologia , Síndrome de Sjogren/metabolismo , Adulto , Biomarcadores , Feminino , Humanos , Linfoma/sangue , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Glândulas Salivares Menores , Síndrome de Sjogren/etiologia
17.
Immunology ; 142(3): 442-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24597649

RESUMO

Separate ligand-receptor paradigms are commonly used for each type of interferon (IFN). However, accumulating evidence suggests that type I and type II IFNs may not be restricted to independent pathways. Using different cell types deficient in IFNAR1, IFNAR2, IFNGR1, IFNGR2 and IFN-γ, we evaluated the contribution of each element of the IFN system to the activity of type I and type II IFNs. We show that deficiency in IFNAR1 or IFNAR2 is associated with impairment of type II IFN activity. This impairment, presumably resulting from the disruption of the ligand-receptor complex, is obtained in all cell types tested. However, deficiency of IFNGR1, IFNGR2 or IFN-γ was associated with an impairment of type I IFN activity in spleen cells only, correlating with the constitutive expression of type II IFN (IFN-γ) observed on those cells. Therefore, in vitro the constitutive expression of both the receptors and the ligands of type I or type II IFN is critical for the enhancement of the IFN activity. Any IFN deficiency can totally or partially impair IFN activity, suggesting the importance of type I and type II IFN interactions. Taken together, our results suggest that type I and type II IFNs may regulate biological activities through distinct as well as common IFN receptor complexes.


Assuntos
Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Animais , Ligantes , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia
18.
FEBS Open Bio ; 14(4): 532-544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321830

RESUMO

Unlike mammals, fish express two type II interferons, IFNγ and fish-specific IFNγ (IFNγ-related or IFNγrel). We previously reported the presence of two IFNγrel genes, IFNγrel 1 and IFNγrel 2, which exhibit potent antiviral activity in the Ginbuna crucian carp, Carassius auratus langsdorfii. We also found that IFNγrel 1 increased allograft rejection; however, the IFNγrel 1 receptor(s) and signaling pathways underlying this process have not yet been elucidated. In this study, we examined the unique signaling mechanism of IFNγrel 1 and its receptors. The phosphorylation and transcriptional activation of STAT6 in response to recombinant Ginbuna IFNγrel 1 (rgIFNγrel 1) was observed in Ginbuna-derived cells. Binding of rgIFNγrel 1 to Class II cytokine receptor family members (Crfbs), Crfb5 and Crfb17, which are also known as IFNAR1 and IFNGR1-1, respectively, was detected by flow cytometry. Expression of the IFNγrel 1-inducible antiviral gene, Isg15, was highest in Crfb5- and Crfb17-overexpressing GTS9 cells. Dimerization of Crfb5 and Crfb17 was detected by chemical crosslinking. The results indicate that IFNγrel 1 activates Stat6 through an interaction with unique pairs of receptors, Crfb5 and Crfb17. Indeed, this cascade is distinct from not only that of IFNγ but also that of known IFNs in other vertebrates. IFNs may be classified by their receptor and signal transduction pathways. Taken together, IFNγrel 1 may be classified as a novel type of IFN family member in vertebrates. Our findings provide important information on interferon gene evolution in bony fish.


Assuntos
Carpas , Interferon gama , Animais , Interferon gama/metabolismo , Interferons , Carpas/metabolismo , Transdução de Sinais , Antivirais , Mamíferos
19.
Front Immunol ; 14: 1279245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179044

RESUMO

Differences in immune response between men and women may influence the outcome of infectious diseases. Intestinal infection with Entamoeba histolytica leads to hepatic amebiasis, which is more common in males. Previously, we reported that innate immune cells contribute to liver damage in males in the murine model for hepatic amebiasis. Here, we focused on the influences of sex and androgens on neutrophils in particular. Infection associated with neutrophil accumulation in the liver was higher in male than in female mice and further increased after testosterone treatment in both sexes. Compared with female neutrophils, male neutrophils exhibit a more immature and less activated status, as evidenced by a lower proinflammatory N1-like phenotype and deconvolution, decreased gene expression of type I and type II interferon stimulated genes (ISGs) as well as downregulation of signaling pathways related to neutrophil activation. Neutrophils from females showed higher protein expression of the type I ISG viperin/RSAD2 during infection, which decreased by testosterone substitution. Moreover, ex vivo stimulation of human neutrophils revealed lower production of RSAD2 in neutrophils from men compared with women. These findings indicate that sex-specific effects on neutrophil physiology associated with maturation and type I IFN responsiveness might be important in the outcome of hepatic amebiasis.


Assuntos
Interferon Tipo I , Abscesso Hepático Amebiano , Humanos , Masculino , Feminino , Camundongos , Animais , Neutrófilos , Testosterona/farmacologia , Interferon gama
20.
Front Cell Neurosci ; 16: 913299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035261

RESUMO

Interferon-γ (IFN-γ), a cytokine with neuromodulatory properties, has been shown to enhance inhibitory transmission. Because early inhibitory neurotransmission sculpts functional neuronal circuits, its developmental alteration may have grave consequences. Here, we investigated the acute effects of IFN-γ on γ-amino-butyric acid (GABA)ergic currents in layer 5 pyramidal neurons of the somatosensory cortex of rats at the end of the first postnatal week, a period of GABA-dependent cortical maturation. IFN-γ acutely increased the frequency and amplitude of spontaneous/miniature inhibitory postsynaptic currents (s/mIPSC), and this could not be reversed within 30 min. Neither the increase in amplitude nor frequency of IPSCs was due to upregulated interneuron excitability as revealed by current clamp recordings of layer 5 interneurons labeled with VGAT-Venus in transgenic rats. As we previously reported in more mature animals, IPSC amplitude increase upon IFN-γ activity was dependent on postsynaptic protein kinase C (PKC), indicating a similar activating mechanism. Unlike augmented IPSC amplitude, however, we did not consistently observe an increased IPSC frequency in our previous studies on more mature animals. Focusing on increased IPSC frequency, we have now identified a different activating mechanism-one that is independent of postsynaptic PKC but is dependent on inducible nitric oxide synthase (iNOS) and soluble guanylate cyclase (sGC). In addition, IFN-γ shifted short-term synaptic plasticity toward facilitation as revealed by a paired-pulse paradigm. The latter change in presynaptic function was not reproduced by the application of a nitric oxide donor. Functionally, IFN-γ-mediated alterations in GABAergic transmission overall constrained early neocortical activity in a partly nitric oxide-dependent manner as revealed by microelectrode array field recordings in brain slices analyzed with a spike-sorting algorithm. In summary, with IFN-γ-induced, NO-dependent augmentation of spontaneous GABA release, we have here identified a mechanism by which inflammation in the central nervous system (CNS) plausibly modulates neuronal development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa