Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochem Biophys Res Commun ; 702: 149635, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335702

RESUMO

Dietary vitamin K1 (phylloquinone: PK) and menaquinone (MK-n) are converted to menadione (MD) in the small intestine and then translocated to various tissues where they are converted to vitamin K2 (menaquinone-4: MK-4) by UbiA prenyltransferase domain containing protein 1 (UBIAD1). MK-4 is effective in bone formation and is used to treat osteoporosis in Japan. UBIAD1 is expressed in bone and osteoblasts and shows conversion to MK-4, but the role of UBIAD1 in osteogenesis is unknown. In this study, we investigated the function of UBIAD1 in osteogenesis using a tamoxifen-dependent UBIAD1-deficient mouse model. When UBIAD1 deficiency was induced from the first week of life, the femur was significantly shortened, and bone mineral density (BMD) was reduced. In addition, the expression of bone and chondrocyte matrix proteins and chondrocyte differentiation factors was significantly decreased. In primary cultured chondrocytes, chondrocyte differentiation was significantly reduced by UBIAD1 deficiency. These results suggest that UBIAD1 is an important factor for the regulation of chondrocyte proliferation and differentiation during osteogenesis.


Assuntos
Dimetilaliltranstransferase , Vitamina K , Animais , Camundongos , Vitamina K/metabolismo , Osteogênese , Condrogênese , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Vitamina K 1/farmacologia
2.
Perfusion ; 38(6): 1268-1276, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35491985

RESUMO

BACKGROUND AND OBJECTIVES: Myocardial ischemia-reperfusion injury (MIRI) threatens global health and lowers people's sense of happiness. Till now, the mechanism of MIRI has not been well-understood. Therefore, this study was designed to explore the role of UBIAD1 in MIRI as well as its detailed reaction mechanism. METHODS: The mRNA and protein expressions of UBIAD1 before or after transfection were measured using RT-qPCR and western blot. Western blot was also adopted to measure the expressions of signaling pathway-, mitochondrial damage- and apoptosis-related proteins. Moreover, mitochondrial membrane potential and ATP level were verified by JC-1 immunofluorescence and ATP kits, respectively. With the application of CCK-8, LDH and CK-MB assays, the cell viability, LDH and CK-MB levels were evaluated, respectively. In addition, the cell apoptosis was detected using TUNEL. Finally, the expressions of ROS, SOD, MDA and CAT were measured using DCFH-DA, SOD, MDA and CAT assays, respectively. RESULTS: In the present study, we found that UBIAD1 was downregulated in hypoxia-reoxygenation (H/R) -induced H9C2 cells and its upregulation could activate SIRT1/PGC1α signaling pathway. It was also found that UBIAD1 regulated mitochondrial membrane potential and ATP level via activating SIRT1/PGC1α signaling pathway. In addition, the injury of H/R-induced H9C2 cells could be relieved by UBIAD1 through the activation of SIRT1/PGC1α signaling pathway. Moreover, UBIAD1 exhibited inhibitory effects on apoptosis and oxidative stress of H/R-induced H9C2 cells through activating SIRT1/PGC1α signaling pathway. CONCLUSION: To sum up, UBIAD1 could alleviate apoptosis, oxidative stress and H9C2 cell injury by activating SIRT1/PGC1α, which laid experimental foundation for the clinical treatment of MIRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia , Estresse Oxidativo , Hipóxia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico , Apoptose
3.
Int J Med Sci ; 18(12): 2607-2614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104092

RESUMO

Intracerebral hemorrhage (ICH) is a devastating type of stroke with high morbidity and mortality, and the effective therapies for ICH remain to be explored. L-3-n-butylphthalide (NBP) is widely used in the treatment of ischemic stroke. However, few studies evaluated the therapeutic effects of NBP on ICH. Therefore, the present study aims to evaluate the effects of NBP on ICH and its potential mechanism. The rats were randomly divided into sham-operated group, saline-treated (ICH + saline) group, and NBP-treated (ICH + NBP) group. The ICH model of SD rats induced by IV collagenase was established. The modified Garcia JH score was used to detect the neurological deficit in rats. Western Blot and immunohistochemistry analysis was applied to test the levels of UBIAD1 and caspase-3 expressions in the perihematomal region. The rates of apoptotic cells were detected by TUNEL staining. The results showed that NBP up-regulated the expression of UBIAD1, reduced the apoptotic cells in the perihematomal region, and improved the neurological deficit. Taken together, our study added some new evidence to the application of NBP in ICH treatment.


Assuntos
Benzofuranos/administração & dosagem , Hemorragia Cerebral/tratamento farmacológico , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Animais , Hemorragia Cerebral/etiologia , Modelos Animais de Doenças , Acidente Vascular Cerebral Hemorrágico/etiologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
4.
Trends Biochem Sci ; 41(4): 356-370, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26922674

RESUMO

The UbiA superfamily of intramembrane prenyltransferases catalyzes a key biosynthetic step in the production of ubiquinones, menaquinones, plastoquinones, hemes, chlorophylls, vitamin E, and structural lipids. These lipophilic compounds serve as electron and proton carriers for cellular respiration and photosynthesis, as antioxidants to reduce cell damage, and as structural components of microbial cell walls and membranes. This article reviews the biological functions and enzymatic activities of representative members of the superfamily, focusing on the remarkable recent research progress revealing that the UbiA superfamily is centrally implicated in several important physiological processes and human diseases. Because prenyltransferases in this superfamily have distinctive substrate preferences, two recent crystal structures are compared to illuminate the general mechanism for substrate recognition.


Assuntos
Alquil e Aril Transferases/química , Membrana Celular/enzimologia , Dimetilaliltranstransferase/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Clorofila/biossíntese , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Expressão Gênica , Heme/biossíntese , Humanos , Família Multigênica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Quinonas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vitamina E/biossíntese
5.
Annu Rev Nutr ; 38: 127-151, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29856932

RESUMO

Vitamin K (VK) is an essential cofactor for the post-translational conversion of peptide-bound glutamate to γ-carboxyglutamate. The resultant vitamin K-dependent proteins are known or postulated to possess a variety of biological functions, chiefly in the maintenance of hemostasis. The vitamin K cycle is a cellular pathway that drives γ-carboxylation and recycling of VK via γ-carboxyglutamyl carboxylase (GGCX) and vitamin K epoxide reductase (VKOR), respectively. In this review, we show how novel molecular biological approaches are providing new insights into the pathophysiological mechanisms caused by rare mutations of both GGCX and VKOR. We also discuss how other protein regulators influence the intermediary metabolism of VK, first through intestinal absorption and second through a pathway that converts some dietary phylloquinone to menadione, which is prenylated to menaquinone-4 (MK-4) in target tissues by UBIAD1. The contribution of MK-4 synthesis to VK functions is yet to be revealed.


Assuntos
Absorção Intestinal/fisiologia , Vitamina K/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Humanos , Mutação , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
6.
Int J Mol Sci ; 20(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013667

RESUMO

UbiA prenyltransferase domain-containing protein 1 (UBIAD1) is a vitamin K2 biosynthetic enzyme. We previously showed the lethality of this enzyme in UBIAD1 knockout mice during the embryonic stage. However, the biological effects of UBIAD1 deficiency after birth remain unclear. In the present study, we used a tamoxifen-inducible systemic UBIAD1 knockout mouse model to determine the role of UBIAD1 in adult mice. UBIAD1 knockout resulted in the death of the mice within about 60 days of administration of tamoxifen. The pancreas presented with the most prominent abnormality in the tamoxifen-induced UBIAD1 knockout mice. The pancreas was reduced remarkably in size; furthermore, the pancreatic acinar cells disappeared and were replaced by vacuoles. Further analysis revealed that the vacuoles were adipocytes. UBIAD1 deficiency in the pancreatic acinar cells caused an increase in oxidative stress and autophagy, leading to apoptotic cell death in the tamoxifen-induced UBIAD 1 knockout mice. These results indicate that UBIAD1 is essential for maintaining the survival of pancreatic acinar cells in the pancreas.


Assuntos
Células Acinares/metabolismo , Dimetilaliltranstransferase/genética , Pâncreas/citologia , Pâncreas/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Atrofia , Autofagia/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/genética , Dimetilaliltranstransferase/metabolismo , Feminino , Genes Letais , Genótipo , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/patologia , Fenótipo , Tamoxifeno/farmacologia
7.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226734

RESUMO

Vitamin K is classified into three homologs depending on the side-chain structure, with 2-methyl-1,4-naphthoqumone as the basic skeleton. These homologs are vitamin K1 (phylloquinone: PK), derived from plants with a phythyl side chain; vitamin K2 (menaquinone-n: MK-n), derived from intestinal bacteria with an isoprene side chain; and vitamin K3 (menadione: MD), a synthetic product without a side chain. Vitamin K homologs have physiological effects, including in blood coagulation and in osteogenic activity via γ-glutamyl carboxylase and are used clinically. Recent studies have revealed that vitamin K homologs are converted to MK-4 by the UbiA prenyltransferase domain-containing protein 1 (UBIAD1) in vivo and accumulate in all tissues. Although vitamin K is considered to have important physiological effects, its precise activities and mechanisms largely remain unclear. Recent research on vitamin K has suggested various new roles, such as transcriptional activity as an agonist of steroid and xenobiotic nuclear receptor and differentiation-inducing activity in neural stem cells. In this review, we describe synthetic ligands based on vitamin K and exhibit that the strength of biological activity can be controlled by modification of the side chain part.


Assuntos
Neurogênese/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Vitamina K/análogos & derivados , Vitamina K/farmacologia , Vitaminas/química , Vitaminas/farmacologia , Animais , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Receptor de Pregnano X/metabolismo
8.
J Cell Physiol ; 233(9): 7480-7496, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663377

RESUMO

Cerebral ischemia/reperfusion-induced injury plays a significant role in the development of multi-subcellular organelles injury after ischemic stroke. UBIAD1 was discovered originally as a potential tumor suppressor protein. Recently, analysis of UBIAD1 has indicated it is a prenyltransferase enzyme for both non-mitochondrial CoQ10 and vitamin K2 production. Further, UBIAD1 has been localized to multiple subcellular organelles. Particularly, UBIAD1 plays an important role in the regulation of oxidative stress, apoptosis and cell proliferation, cholesterol and lipid metabolism, which was closely associated with the cerebral ischemic/reperfusion mechanism. However, the mechanism underlying effects of UBIAD1 on cerebral ischemia/reperfusion-induced injury remains largely unknown. We aimed to investigate the effects of UBIAD1 on ischemia/reperfusion-induced multiple subcellular organelles injury in vitro, mouse N2A cells were subjected to a classical oxygen-glucose deprivation and reperfusion (OGD/R) insult. The expression of UBIAD1 was reduced in mouse N2A cells after OGD/R. UBIAD1 exhibits multi-subcellular organelles co-localization in N2a cells, including in the mitochondria, endoplasmic reticulum, and Golgi apparatus. The over-expression of UBIAD1 significantly protects against OGD/R-induced cell death. UBIAD1 over-expression also attenuated OGD/R-induced mitochondrial fragmentation and dysfunction and mediated the level of apoptosis-associated protein. Moreover, we observed that the over-expression of UBIAD1 ameliorated OGD/R-induced fragmentation and reduced the level of oxidative stress-related protein expression in both the endoplasmic reticulum and Golgi apparatus. Besides, the neuroprotective effect of UBIAD1 was correlated with the PI3K/AKT pathway, which was demonstrated using the PI3K inhibitor LY294002 and perifosion. Collectively, these findings identified that UBIAD1 protects against OGD/R-induced multiple subcellular organelles injury through PI3K/AKT Pathway.


Assuntos
Dimetilaliltranstransferase/metabolismo , Glucose/deficiência , Organelas/metabolismo , Oxigênio/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dimetilaliltranstransferase/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Organelas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
9.
Graefes Arch Clin Exp Ophthalmol ; 256(11): 2127-2134, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30084067

RESUMO

PURPOSE: Schnyder corneal dystrophy (SCD) is a rare inherited disease that leads to gradual vision loss by the deposition of lipids in the corneal stroma. The aim of this study is to report a novel pathogenic variant in the UBIAD1 gene and present clinical and molecular findings in Polish patients with SCD. METHODS: Individuals (n = 37) originating from four Polish SCD families were subjected for a complete ophthalmological check-up and genetic testing. Corneal changes were visualized by slit-lamp examination, anterior segment optical coherent tomography (AS-OCT), and in vivo confocal microscopy (IVCM). RESULTS: In a proband with primarily mild SCD that progressed rapidly at the end of the fifth decade of life, a novel missense pathogenic variant in UBIAD1 (p.Thr120Arg) was identified. The other studied SCD family represents the second family reported worldwide with the UBIAD1 p.Asp112Asn variant. SCD in the remaining two families resulted from a frequently identified p.Asn102Ser pathogenic variant. All affected subjects presented a crystalline form of SCD. The severity of corneal changes was age-dependent, and their morphology and localization are described in detail. CONCLUSION: The novel p.Thr120Arg is the fourth SCD-causing variant lying within the FARM motif of the UBIAD1 protein, which underlines a high importance of this motif for SCD pathogenesis. The current study provides independent evidence for the pathogenic potential of UBIAD1 p.Asp112Asn and new information useful for clinicians.


Assuntos
Distrofias Hereditárias da Córnea/genética , Dimetilaliltranstransferase/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Distrofias Hereditárias da Córnea/diagnóstico , Feminino , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Linhagem , Reação em Cadeia da Polimerase , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Adulto Jovem
10.
BMC Ophthalmol ; 18(1): 250, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223810

RESUMO

BACKGROUND: The purpose of this study was to identify the genetic cause and describe the clinical phenotype of Schnyder corneal dystrophy (SCD) in six unrelated probands. METHODS: We identified two white Czech, two white British and two South Asian families with a clinical diagnosis of SCD. Ophthalmic assessment included spectral domain optical coherence tomography (SD-OCT) of one individual with advanced disease, and SD-OCT and confocal microscopy of a child with early stages of disease. UBIAD1 coding exons were amplified and Sanger sequenced in each proband. A fasting serum lipid profile was measured in three probands. Paternity testing was performed in one family. RESULTS: A novel heterozygous c.527G>A; p.(Gly176Glu) mutation in UBIAD1 was identified in one Czech proband. In the second Czech proband, aged 6 years when first examined, a previously described de novo heterozygous c.289G>A; p.(Ala97Thr) mutation was found. Two probands of South Asian descent carried a known c.305G>A; p.(Asn102Ser) mutation in the heterozygous state. Previously reported heterozygous c.361C>T; p.(Leu121Phe) and c.308C>T; p.(Thr103Ile) mutations were found in two white British families. Although crystalline deposits were present in all probands the affected area was small in some individuals. Corneal arcus and stromal haze were the most prominent phenotypical feature in two probands. In the Czech probands, SD-OCT confirmed accumulation of reflective material in the anterior stroma. Crystalline deposits were visualized by confocal microscopy. Mild dyslipidemia was found in all three individuals tested. CONCLUSION: Although de novo occurrence of mutations in UBIAD1 is extremely rare, SCD should be considered in the differential diagnosis of bilateral corneal haze and/or crystal deposition, especially in children.


Assuntos
Distrofias Hereditárias da Córnea/genética , DNA/genética , Dimetilaliltranstransferase/genética , Mutação , Adulto , Criança , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/metabolismo , Análise Mutacional de DNA , Dimetilaliltranstransferase/metabolismo , Feminino , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Linhagem , Fenótipo , Tomografia de Coerência Óptica/métodos
11.
Bull Exp Biol Med ; 165(1): 69-71, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29797120

RESUMO

The study examined the effect of endogenous lipid-soluble antioxidant coenzyme Q10 on the expression of UbiA gene of prenyltransferase domain-containing protein 1 (UbiAd1) involved in synthesis of vitamin K2 (and probably of coenzyme Q10) on a rat model of ischemic stroke provoked by ligation of the middle cerebral artery in the left hemisphere. Ischemia enhanced expression of mRNA of UbiAd1 gene in both cerebral hemispheres, but the effect was significant only in the contralateral one. The study revealed no effect of intraperitoneal injection of coenzyme Q10 (30 mg/kg) on ischemia-produced elevation of mRNA of UbiAd1 gene. Further studies are needed to assess possible neuroprotective effects of antioxidant coenzyme Q10.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/metabolismo , Dimetilaliltranstransferase/genética , Fármacos Neuroprotetores/uso terapêutico , Ubiquinona/análogos & derivados , Animais , Masculino , Ratos , Ubiquinona/uso terapêutico
12.
J Nutr ; 146(8): 1521-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27385762

RESUMO

BACKGROUND: There has been limited characterization of biological variables that impact vitamin K metabolism. This gap in knowledge can limit the translation of data obtained from preclinical animal studies to future human studies. OBJECTIVE: The purpose of this study was to determine the effects of diet, sex, and housing on serum, tissue, and fecal vitamin K concentrations and gene expression in C57BL6 mice during dietary vitamin K manipulation. METHODS: C57BL6 4-mo-old male and female mice were randomly assigned to conventional or suspended-wire cages and fed control [1400 ± 80 µg phylloquinone (PK)/kg] or deficient (31 ± 0.45 µg PK/kg) diets for 28 d in a factorial design. PK and menaquinone (MK) 4 plasma and tissue concentrations were measured by HPLC. Long-chain MKs were measured in all matrices by LC-atmospheric pressure chemical ionization-mass spectrometry. Gene expression was quantified by reverse transcriptase-polymerase chain reaction in the liver, brain, kidney, pancreas, and adipose tissue. RESULTS: Male and female mice responded differently to dietary manipulation in a tissue-dependent manner. In mice fed the control diet, females had ∼3-fold more MK4 in the brain and mesenteric adipose tissue than did males and 100% greater PK concentrations in the liver, kidney, and mesenteric adipose tissue than did males. In mice fed the deficient diet, kidney MK4 concentrations were ∼4-fold greater in females than in males, and there were no differences in other tissues. Males and females differed in the expression of vitamin K expoxide reductase complex 1 (Vkorc1) in mesenteric adipose tissue and the pancreas and ubiA domain-containing protein 1 (Ubiad1) in the kidney and brain. There was no effect of housing on serum, tissue, or fecal concentrations of any vitamin K form. CONCLUSIONS: Vitamin K concentrations and expression of key metabolic enzymes differ between male and female mice and in response to the dietary PK concentration. Identifying factors that may impact study design and outcomes of interest is critical to optimize study parameters examining vitamin K metabolism in animal models.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Dieta , Rim/metabolismo , Fígado/metabolismo , Pâncreas/metabolismo , Vitamina K/metabolismo , Tecido Adiposo/enzimologia , Animais , Dimetilaliltranstransferase/metabolismo , Feminino , Habitação , Abrigo para Animais , Masculino , Proteínas de Membrana/metabolismo , Mesentério/enzimologia , Mesentério/metabolismo , Camundongos Endogâmicos C57BL , Pâncreas/enzimologia , Fatores Sexuais , Distribuição Tecidual , Vitamina K/administração & dosagem , Vitamina K 1/administração & dosagem , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo , Deficiência de Vitamina K/enzimologia , Deficiência de Vitamina K/metabolismo , Vitamina K Epóxido Redutases/metabolismo
13.
Biochem Biophys Res Commun ; 460(2): 238-44, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25772619

RESUMO

Vitamin K is involved in bone formation and blood coagulation. Natural vitamin K compounds are composed of the plant form phylloquinone (vitamin K1) and a series of bacterial menaquionones (MK-n; vitamin K2). Menadione (vitamin K3) is an artificial vitamin K compound. MK-4 contains 4-isoprenyl as a side group in the 2-methyl-1,4-naphthoquinone common structure and has various bioactivities. UbiA prenyltransferase domain containing 1 (UBIAD1 or TERE1) is the menaquinone-4 biosynthetic enzyme. UBIAD1 transcript expression significantly decreases in patients with prostate carcinoma and overexpressing UBIAD1 inhibits proliferation of a tumour cell line. UBIAD1 mRNA expression is ubiquitous in mouse tissues, and higher UBIAD1 mRNA expression levels are detected in the brain, heart, kidneys and pancreas. Several functions of UBIAD1 have been reported; however, regulation of the human UBIAD1 gene has not been elucidated. Here we report cloning and characterisation of the human UBIAD1 promoter. A 5' rapid amplification of cDNA ends analysis revealed that the main transcriptional start site was 306 nucleotides upstream of the translation initiation codon. Deletion and mutation analyses revealed the functional importance of the YY1 consensus motif. Electrophoretic gel mobility shift and chromatin immunoprecipitation assays demonstrated that YY1 binds the UBIAD1 promoter in vitro and in vivo. In addition, YY1 small interfering RNA decreased endogenous UBIAD1 mRNA expression and UBIAD1 conversion activity. These results suggest that YY1 up-regulates UBIAD1 expression and UBIAD1 conversion activity through the UBIAD1 promoter.


Assuntos
Dimetilaliltranstransferase/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator de Transcrição YY1/fisiologia , Sequência de Bases , Western Blotting , Imunoprecipitação da Cromatina , DNA Complementar , Dimetilaliltranstransferase/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica
14.
J Biol Chem ; 288(46): 33071-80, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085302

RESUMO

Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and (1)H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4.


Assuntos
Mucosa Intestinal/metabolismo , Vitamina K 1/farmacocinética , Vitamina K 2/análogos & derivados , Vitamina K 3/metabolismo , Vitaminas/farmacocinética , Animais , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Vitamina K 1/farmacologia , Vitamina K 2/metabolismo , Vitaminas/farmacologia
15.
Jpn J Ophthalmol ; 67(1): 38-42, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36367598

RESUMO

PURPOSE: We aimed to identify pathogenic variations in the UbiA prenyltransferase domain-containing protein 1 (UBIAD1) gene in a Japanese family with Schnyder corneal dystrophy (SCD). STUDY DESIGN: Clinical study METHODS: Three clinically diagnosed SCD patients from a single pedigree participated. Patients 1 and 2 were 69- and 65-year-old sisters, and patient 3 was the 42-year-old daughter of patient 1. Blood samples from the patients were obtained for genetic analysis. Mutation screening of the two UBIAD1 exons was performed using polymerase chain reaction (PCR)-based DNA sequencing. RESULTS: All participants were found to be heterozygous for the pathogenic missense variation c.695 A > G (p.Asn232Ser) in exon 2 of UBIAD1. CONCLUSION: This is the first report on the pathogenic UBIAD1 variation c.695 A > G (p.Asn232Ser) in a Japanese population. SCD is a rare corneal dystrophy, and further research on additional cases will aid in the elucidation of disease mechanisms and development of therapeutic strategies.


Assuntos
Distrofias Hereditárias da Córnea , Dimetilaliltranstransferase , Humanos , Adulto , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , População do Leste Asiático , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética , Mutação , Linhagem
16.
Redox Biol ; 51: 102272, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255427

RESUMO

Cutaneous melanoma is the deadliest type of skin cancer, although it accounts for a minority of all skin cancers. Oxidative stress is involved in all stages of melanomagenesis and cutaneous melanoma can sustain a much higher load of Reactive Oxygen Species (ROS) than normal tissues. Melanoma cells exploit specific antioxidant machinery to support redox homeostasis. The enzyme UBIA prenyltransferase domain-containing protein 1 (UBIAD1) is responsible for the biosynthesis of non-mitochondrial CoQ10 and plays an important role as antioxidant enzyme. Whether UBIAD1 is involved in melanoma progression has not been addressed, yet. Here, we provide evidence that UBIAD1 expression is associated with poor overall survival (OS) in human melanoma patients. Furthermore, UBIAD1 and CoQ10 levels are upregulated in melanoma cells with respect to melanocytes. We show that UBIAD1 and plasma membrane CoQ10 sustain melanoma cell survival and proliferation by preventing lipid peroxidation and cell death. Additionally, we show that the NAD(P)H Quinone Dehydrogenase 1 (NQO1), responsible for the 2-electron reduction of CoQ10 on plasma membranes, acts downstream of UBIAD1 to support melanoma survival. By showing that the CoQ10-producing enzyme UBIAD1 counteracts oxidative stress and lipid peroxidation events in cutaneous melanoma, this work may open to new therapeutic investigations based on UBIAD1/CoQ10 loss to cure melanoma.


Assuntos
Dimetilaliltranstransferase/metabolismo , Melanoma , Neoplasias Cutâneas , Antioxidantes/metabolismo , Morte Celular , Humanos , Peroxidação de Lipídeos , Melanoma/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacologia , Melanoma Maligno Cutâneo
17.
Cell Biosci ; 12(1): 42, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379328

RESUMO

BACKGROUND: Neuronal death due to over-oxidative stress responses defines the pathology of cerebral ischemic/reperfusion (I/R) insult. Ferroptosis is a form of oxidative cell death that is induced by disruption of the balance between antioxidants and pro-oxidants in cells. However, the potential mechanisms responsible for cerebral I/R-induced ferroptotic neuronal death have not been conclusively determined. UBIAD1, is a newly identified antioxidant enzyme that catalyzes coenzyme Q10 (CoQ10) and vitamin K2 biosynthesis in the Golgi apparatus membrane and mitochondria, respectively. Even though UBIAD1 is a significant mediator of apoptosis in cerebral I/R challenge, its roles in ferroptotic neuronal death remain undefined. Therefore, we investigated whether ferroptotic neuronal death is involved in cerebral I/R injury. Further, we evaluated the functions and possible mechanisms of UBIAD1 in cerebral I/R-induced ferroptotic neuronal death, with a major focus on mitochondrial and Golgi apparatus dysfunctions. RESULTS: Ferroptosis occurred in cerebral I/R. Ferroptotic neuronal death promoted cerebral I/R-induced brain tissue injury and neuronal impairment. UBIAD1 was expressed in cerebral tissues and was localized in neurons, astrocytes, and microglia. Under cerebral I/R conditions overexpressed UBIAD1 significantly suppressed lipid peroxidation and ferroptosis. Moreover, upregulated UBIAD1 protected against brain tissue damage and neuronal death by alleviating I/R-mediated lipid peroxidation and ferroptosis. However, UBIAD1 knockdown reversed these changes. Enhanced UBIAD1-mediated ferroptosis elevated the antioxidative capacity by rescuing mitochondrial and Golgi apparatus dysfunction in cerebral I/R-mediated neuronal injury. They improved the morphology and biofunctions of the mitochondria and Golgi apparatus, thereby elevating the levels of SOD, T-AOC and production of CoQ10, endothelial nitric oxide synthase (eNOS)-regulated nitric oxide (NO) generation as well as suppressed MDA generation. CONCLUSIONS: The neuroprotective agent, UBIAD1, modulates I/R-mediated ferroptosis by restoring mitochondrial and Golgi apparatus dysfunction in damaged brain tissues and neurons, thereby enhancing antioxidative capacities. Moreover, the rescue of impaired mitochondrial and Golgi apparatus as a possible mechanism of regulating ferroptotic neuronal death is a potential treatment strategy for ischemic stroke.

18.
FEBS J ; 289(9): 2613-2627, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34813684

RESUMO

UbiA prenyltransferase domain-containing protein-1 (UBIAD1) is responsible for the biosynthesis of menaquinone-4 (MK-4), a cofactor for extrahepatic carboxylation of vitamin K-dependent (VKD) proteins. Genetic variations of UBIAD1 are mainly associated with Schnyder corneal dystrophy (SCD), a disease characterized by abnormal accumulation of cholesterol in the cornea. Results from in vitro studies demonstrate that SCD-associated UBIAD1 mutations are defective in MK-4 biosynthesis. However, SCD patients do not exhibit typical phenotypes associated with defects of MK-4 or VKD carboxylation. Here, we coupled UBIAD1's biosynthetic activity of MK-4 with VKD carboxylation in HEK293 cells that stably express a chimeric VKD reporter protein. The endogenous Ubiad1 gene in these cells was knocked out by CRISPR-Cas9-mediated genome editing. The effect of UBIAD1 mutations on MK-4 biosynthesis and VKD carboxylation was evaluated in Ubiad1-deficient reporter cells by determining the production of MK-4 or by measuring the efficiency of reporter-protein carboxylation. Our results show that the hot-spot mutation N102S has a moderate impact on MK-4 biosynthesis (retained ˜ 82% activity) but does not affect VKD carboxylation. However, the G186R mutation significantly affected both MK-4 biosynthesis and VKD carboxylation. Other mutations exhibit varying degrees of effects on MK-4 biosynthesis and VKD carboxylation. These results are consistent with in vivo results obtained from gene knock-in mice and SCD patients. Our findings suggest that UBIAD1's MK-4 biosynthetic activity does not directly correlate with the phenotypes of SCD patients. The established cell-based assays in this study provide a powerful tool for the functional studies of UBIAD1 in a cellular milieu.


Assuntos
Dimetilaliltranstransferase , Vitamina K , Animais , Distrofias Hereditárias da Córnea , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Células HEK293 , Humanos , Camundongos , Mutação , Vitamina K/genética , Vitamina K/metabolismo , Vitamina K 2/metabolismo
19.
Acta Ophthalmol ; 99(2): e171-e177, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32602245

RESUMO

PURPOSE: Schnyder corneal dystrophy (SCD) is a rare autosomal dominant disorder characterized by corneal lipid accumulation and caused by UBIAD1 pathogenic variants. UBIAD1 encodes a vitamin K (VK) biosynthetic enzyme. To assess the corneal and vascular VK status in SCD patients, we focused on matrix Gla protein (MGP), a VK-dependent protein. METHODS: Conformation-specific immunostainings of different MGP maturation forms were performed on corneal sections and primary keratocytes from corneal buttons of two SCD patients with UBIAD1 p.Asp112Asn and p.Asn102Ser pathogenic variants and unrelated donors. Native or UBIAD1-transfected keratocytes were used for gene expression analysis. Plasma samples from SCD patients (n = 12) and control individuals (n = 117) were subjected for inactive desphospho-uncarboxylated MGP level measurements with an ELISA assay. RESULTS: Substantial amounts of MGP were identified in human cornea and most of it in its fully matured and active form. The level of mature MGP did not differ between SCD and control corneas. In primary keratocytes from SCD patients, a highly increased MGP expression and presence of immature MGP forms were detected. Significantly elevated plasma concentration of inactive MGP was found in SCD patients. CONCLUSION: High amount of MGP and the predominance of mature MGP forms in human cornea indicate that VK metabolism is active in the visual system. Availability of MGP seems of vital importance for a healthy cornea and may be related to protection against corneal calcification. Systemic MGP findings reveal a poor vascular VK status in SCD patients and indicate that SCD may lead to cardiovascular consequences.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Córnea/patologia , Distrofias Hereditárias da Córnea/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , RNA/genética , Vitamina K/farmacologia , Proteínas de Ligação ao Cálcio/biossíntese , Células Cultivadas , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/tratamento farmacológico , Topografia da Córnea , Proteínas da Matriz Extracelular/biossíntese , Feminino , Humanos , Masculino , Linhagem , Vitaminas/farmacologia , Proteína de Matriz Gla
20.
Am J Transl Res ; 12(10): 6277-6289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194029

RESUMO

Exosome-encapsulated microRNAs (miRNAs) have been identified as potential cancer biomarkers and pro-tumorigenic mediators for several cancers. However, the miRNA profiling in BCa-Exo (exosomes from plasma of patients with bladder cancer) has not yet been explored. Hence, the aim of this study was to analyze the miRNA profiling in BCa-Exo and to explore the function and mechanism of the selected miR-4644 in BCa progression. Of the 8 differentially expressed miRNAs in BCa-Exo relative to NC-Exo (exosomes from plasma of normal control subjects), hsa-miR-4644 was the only upregulated (fold change >2.0, P<0.05) miRNA, which was further confirmed to be upregulated in plasma of BCa patients and BCa cell lines. Further in vitro assays demonstrated that miR-4644 mimic promoted, whereas miR-4644 inhibitor suppressed BCa cell proliferation and invasion. miR-4644 negatively regulated expression of UBIAD1 (UbiA prenyltransferase domain-containing protein 1) by directly binding to its 3'-UTR region. UBIAD1 overexpression effectively abrogated the promoting effects of miR-4644 mimic on BCa proliferation, migration, and invasion. Additionally, intratumoral injection of miR-4644 antagomir downregulated miR-4644 expression in tumors and suppressed tumorigenesis in mouse xenografts. Collectively, miR-4644 promotes BCa progression by targeting UBIAD1. miR-4644 may be an important therapeutic target for BCa treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa