Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Cell Mol Med ; 28(10): e18411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780505

RESUMO

Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , RNA Longo não Codificante/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Animais , Movimento Celular/genética , Evasão Tumoral/genética , Camundongos , Hipóxia Celular/genética , Transdução de Sinais
2.
J Transl Med ; 22(1): 737, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103915

RESUMO

BACKGROUND: Cancer stem-like cells (CSCs) play an important role in initiation and progression of aggressive cancers, including esophageal cancer. Natural killer (NK) cells are key effector lymphocytes of innate immunity that directly attack a wide variety of cancer cells. NK cell-based therapy may provide a new treatment option for targeting CSCs. In this study, we aimed to investigate the sensitivity of human esophageal CSCs to NK cell-mediated cytotoxicity. METHODS: CSCs were enriched from human esophageal squamous cell carcinoma cell lines via sphere formation culture. Human NK cells were selectively expanded from the peripheral blood of healthy donors. qRT-PCR, flow cytometry and ELISA assays were performed to examine RNA expression and protein levels, respectively. CFSE-labeled target cells were co-cultured with human activated NK cells to detect the cytotoxicity of NK cells by flow cytometry. RESULTS: We observed that esophageal CSCs were more resistant to NK cell-mediated cytotoxicity compared with adherent counterparts. Consistently, esophageal CSCs showed down-regulated expression of ULBP-1, a ligand for NK cells stimulatory receptor NKG2D. Knockdown of ULBP-1 resulted in significant inhibition of NK cell cytotoxicity against esophageal CSCs, whereas ULBP-1 overexpression led to the opposite effect. Finally, the pro-differentiation agent all-trans retinoic acid was found to enhance the sensitivity of esophageal CSCs to NK cell cytotoxicity. CONCLUSIONS: This study reveals that esophageal CSCs are more resistant to NK cells through down-regulation of ULBP-1 and provides a promising approach to promote the activity of NK cells targeting esophageal CSCs.


Assuntos
Citotoxicidade Imunológica , Regulação para Baixo , Neoplasias Esofágicas , Células Matadoras Naturais , Células-Tronco Neoplásicas , Humanos , Células Matadoras Naturais/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regulação para Baixo/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
BMC Musculoskelet Disord ; 25(1): 213, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481217

RESUMO

Osteoporosis is caused by the imbalance of osteoblasts and osteoclasts. The regulatory mechanisms of differentially expressed genes (DEGs) in pathogenesis of osteoporosis are of significant and needed to be further investigated. GSE100609 dataset downloaded from Gene Expression Omnibus (GEO) database was used to identified DEGs in osteoporosis patients. KEGG analysis was conducted to demonstrate signaling pathways related to enriched genes. Osteoporosis patients and the human mesenchymal stem cells (hMSCs) were obtained for in vivo and in vitro resaerch. Lentivirus construction and viral infection was used to knockdown genes. mRNA expression and protein expression were detected via qRT-PCR and western blot assay separately. Alkaline phosphatase (ALP) activity detection, alizarin Red S (ARS) staining, and expression of bone morphogenetic protein 2 (BMP2), osteocalcin (OCN) and Osterix were evaluated to determine osteoblast differentiation capacity. UL-16 binding protein 1 (ULBP1) gene was upregulated in osteoporosis and downregulated in differentiated hMSCs. Knockdown of ULBP1 increased ALP activity, mineralization ability evaluated by ARS staining, expression of BMP2, OCN and Osterix in differentiated hMSCs. Furthermore, rescue experiment demonstrated that suppressed ULBP1 boosted osteoblast differentiation by activating TNF-ß signaling pathway. Knockdown of ULBP1 gene could promoted osteoblast differentiation by activating TNF-ß signaling pathway in differentiated hMSCs. ULBP1 may be a the Achilles' heel of osteoporosis, and suppression of ULBP1 could be a promising treatment for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Linfotoxina-alfa/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteína Smad2/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612935

RESUMO

Ligands of the natural killer group 2D (NKG2DL) family are expressed on malignant cells and are usually absent from healthy tissues. Recognition of NKG2DLs such as MICA/B and ULBP1-3 by the activating immunoreceptor NKG2D, expressed by NK and cytotoxic T cells, stimulates anti-tumor immunity in breast cancer. Upregulation of membrane-bound NKG2DLs in breast cancer has been demonstrated by immunohistochemistry. Tumor cells release NKG2DLs via proteolytic cleavage as soluble (s)NKG2DLs, which allows for effective immune escape and is associated with poor prognosis. In this study, we collected serum from 140 breast cancer (BC) and 20 ductal carcinoma in situ (DCIS) patients at the time of initial diagnosis and 20 healthy volunteers (HVs). Serum levels of sNKG2DLs were quantified through the use of ELISA and correlated with clinical data. The analyzed sNKG2DLs were low to absent in HVs and significantly higher in BC patients. For some of the ligands analyzed, higher sNKG2DLs serum levels were associated with the classification of malignant tumor (TNM) stage and grading. Low sMICA serum levels were associated with significantly longer progression-free (PFS) and overall survival (OS). In conclusion, we provide the first insights into sNKG2DLs in BC patients and suggest their potential role in tumor immune escape in breast cancer. Furthermore, our observations suggest that serum sMICA levels may serve as a prognostic parameter in the patients analyzed in this study.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Pesquisadores , Ensaio de Imunoadsorção Enzimática , Nível de Saúde
5.
J Infect Dis ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774496

RESUMO

BACKGROUND: JC polyomavirus(JCPyV) causes progressive multifocal leukoencephalopathy(PML), a potentially fatal complication of severe immune suppression with no effective treatment. Natural killer (NK) cells play critical roles in defense against viral infections, yet NK cell response to JCPyV infection remains unexplored. METHODS: NK and T cell responses against the JCPyV VP1 were compared using intracellular cytokine staining (ICS) upon stimulation with peptide pools. A novel flow cytometry-based assay was developed to determine NK cell killing efficiency of JCPyV-infected astrocyte-derived SVG-A cells. Blocking antibodies were used to identify the specific NK cell receptors in immune recognition of JCPyV-infected cells. RESULTS: In about 40% of healthy donors, we detected robust CD107a upregulation and IFN-γ production by NK cells, extending beyond T cell responses. Next, using the NK cell-mediated killing assay, we showed that co-culture of NK cells and JCPyV-infected SVG-A cells leads to a 60% reduction in infection, on average. JCPyV-infected cells had enhanced expression of ULBP2 - a ligand for the activating NK cell receptor NKG2D and addition of NKG2D blocking antibodies decreased NK cell degranulation. CONCLUSION: NKG2D-mediated activation of NK cells plays a key role in controlling JCPyV replication and may be a promising immunotherapeutic target to boost NK cell anti-JCPyV activity.

6.
Mol Cell Biochem ; 478(10): 2207-2219, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36633827

RESUMO

The study aimed to determine whether ULBP2 was associated with prognosis and immune infiltration in colon cancer (CC) and provided important molecular basis in order to early non-invasive diagnosis and immunotherapy of CC. Using The Cancer Genome Atlas database (TCGA) and ImmPort database, we extracted messenger RNA (mRNA) data of CC and immune-related genes, then we used "limma" package, "survival" package, and Venn overlap analysis to obtain the differentially expressed mRNA (DEmRNA) associated with prognosis and immunity of CC patients. "pROC" package was used to analyze receiver operating characteristics (ROC) of target gene. We used chi-square test and two-class logistics model to identify clinicopathological parameters that correlated with target gene expression. In order to determine the effects of target gene expression and clinicopathological parameters on survival, univariate and multivariate cox regression analyses were performed. We analyzed the related functions and signaling pathways of target gene by enrichment analysis. Finally, the correlation between target gene and tumor immune infiltrating was explored by ssGSEA and spearman correlation analysis. Results showed that ULBP2 was a target gene associated with immunity and prognosis in CC patients. CC patients with higher ULBP2 expression had poor outcomes. In terms of ROC, ULBP2 had an area under the curve (AUC) of 0.984. ULBP2 was associated with T stage, N stage, and pathologic stage of CC patients, and served as an independent predictor of overall survival in CC patients. Functional enrichment analysis revealed ULBP2 was obviously enriched in pathways connected with carcinogenesis and immunosuppression. The expression of ULBP2 was significantly associated with tumor immune cells and immune checkpoints according to ssGSEA and spearman correlation analysis. To conclude, our study suggested that ULBP2 was associated with tumor immunity, and might be a biomarker associated with the diagnosis and prognosis of CC patients, and a potential target of CC immunotherapy.


Assuntos
Neoplasias do Colo , Humanos , Neoplasias do Colo/genética , Biomarcadores , Imunoterapia , Carcinogênese , Modelos Logísticos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Ligadas por GPI
7.
J Biol Chem ; 295(33): 11803-11821, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32605922

RESUMO

Staphylococcus aureus is among the leading causes of bacterial infections worldwide. The pathogenicity and establishment of S. aureus infections are tightly linked to its ability to modulate host immunity. Persistent infections are often associated with mutant staphylococcal strains that have decreased susceptibility to antibiotics; however, little is known about how these mutations influence bacterial interaction with the host immune system. Here, we discovered that clinical S. aureus isolates activate human monocytes, leading to cell-surface expression of immune stimulatory natural killer group 2D (NKG2D) ligands on the monocytes. We found that expression of the NKG2D ligand ULBP2 (UL16-binding protein 2) is associated with bacterial degradability and phagolysosomal activity. Moreover, S. aureus-induced ULBP2 expression was linked to altered host cell metabolism, including increased cytoplasmic (iso)citrate levels, reduced glycolytic flux, and functional mitochondrial activity. Interestingly, we found that the ability of S. aureus to induce ULBP2 and proinflammatory cytokines in human monocytes depends on a functional ClpP protease in S. aureus These findings indicate that S. aureus activates ULBP2 in human monocytes through immunometabolic mechanisms and reveal that clpP inactivation may function as a potential immune evasion mechanism. Our results provide critical insight into the interplay between the host immune system and S. aureus that has evolved under the dual selective pressure of host immune responses and antibiotic treatment. Our discovery of an immune stimulatory pathway consisting of human monocyte-based defense against S. aureus suggests that targeting the NKG2D pathway holds potential for managing persistent staphylococcal infections.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Monócitos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Linhagem Celular , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/imunologia , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intercelular/análise , Fagocitose
8.
Biochem Biophys Res Commun ; 563: 40-46, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34058473

RESUMO

Standard chemotherapy for ovarian cancers is often abrogated by drug resistance. Specifically, resistance to cisplatin is a major clinical obstacle to successful treatment of ovarian cancers. The aim of this study was to develop a therapeutic strategy using natural killer (NK) cells to treat cisplatin-resistant ovarian cancers. First, we compared the responses of ovarian cancer cell line A2780 and its cisplatin-resistant counterpart, A2780cis, to treatment with cisplatin plus NK92MI cells. Although combined treatment induces apoptosis of ovarian cancer cells via ROS-dependent and -independent mechanisms, A2780cis were resistant to NK92MI cell-mediated cytotoxicity. We found that A2780cis cells showed markedly higher expression of immune checkpoint protein, PD-L1, than the parental cells. Although pretreatment of A2780cis cells with cisplatin stimulated further expression of PD-L1, it also increased expression of ULBP ligands, which are activating receptors on NK92MI cells, both in vitro and in vivo. These findings suggest that combined use of cisplatin plus NK cell-mediated immunotherapy could overcome immunoresistance of chemoresistant ovarian cancers.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Matadoras Naturais/citologia , Neoplasias Ovarianas/terapia , Antineoplásicos/química , Cisplatino/química , Feminino , Humanos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
9.
Cancer Immunol Immunother ; 70(5): 1213-1226, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33119798

RESUMO

Immunotherapy based on γδT cells has limited efficiency in solid tumors, including colon cancer (CC). The immune evasion of tumor cells may be the main cause of the difficulties of γδT cell-based treatment. In the present study, we explored whether and how B7-H3 regulates the resistance of CC cells to the cytotoxicity of Vγ9Vδ2 (Vδ2) T cells. We observed that B7-H3 overexpression promoted, while B7-H3 knockdown inhibited, CC cell resistance to the killing effect of Vδ2 T cells in vitro and in vivo. Mechanistically, we showed that B7-H3-mediated CC cell resistance to the cytotoxicity of Vδ2 T cells involved a molecular pathway comprising STAT3 activation and decreased ULBP2 expression. ULBP2 blockade or knockdown abolished the B7-H3 silencing-induced increase in the cytotoxicity of Vδ2 T cells to CC cells. Furthermore, cryptotanshinone, a STAT3 phosphorylation inhibitor, reversed the B7-H3 overexpression-induced decrease in ULBP2 expression and attenuated the killing effect of Vδ2 T cells on CC cells. Moreover, there was a negative correlation between the expression of B7-H3 and ULBP2 in the tumor tissues of CC patients. Our results suggest that the B7-H3-mediated STAT3/ULBP2 axis may be a potential candidate target for improving the efficiency of γδT cell-based immunotherapy in CC.


Assuntos
Antígenos B7/metabolismo , Vacinas Anticâncer/imunologia , Neoplasias do Colo/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T/metabolismo , Animais , Antígenos B7/genética , Neoplasias do Colo/terapia , Citotoxicidade Imunológica , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Técnicas de Silenciamento de Genes , Células HCT116 , Xenoenxertos , Humanos , Imunoterapia Adotiva , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos SCID , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/transplante , Evasão Tumoral
10.
Protein Expr Purif ; 178: 105783, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122138

RESUMO

Natural killer (NK) cells are potent cytotoxic effector cells of the innate immune system and play an important role in tumor immunosurveillance and control. NKG2D is an activating receptor of NK cells. The NKG2D receptor-ligand system has contributed to immune cells recognizing tumor cells and the tumor microenvironment. In order to stretch the application of NK cells on adoptive immunotherapy for B-cell malignancies, we designed and produced a novel bispecific ULBP1×CD19-scFv fusion protein, in which the extracellular domain of NKG2D ligand ULBP1 was fused to a single chain variable fragment (scFv) of anti-CD19. The vector expressing ULBP1×CD19-scFv protein was constructed and expressed in Pichia pastoris. Effects of medium composition, concentration of methanol as the inducer, induction time and broth content in shake flask on the expression of the recombinant protein were investigated. The results showed that the optimized conditions for ULBP1×CD19-scFv expression were 1% methanol induction for 96 h with 15% broth content. The secreted recombinant protein was purified using ammonium sulfate fractionation and Ni-NTA affinity chromatography and the purity is about 93%. The cytotoxicity of NK92-MI cells against CD19+ Raji cells was enhanced in the presence of purified ULBP1×CD19-scFv protein. These results indicated that ULBP1 could be used as an activating element of bispecific killer engagers (BiKEs) and Pichia pastoris yeast might be an alternative expression host for BiKEs production.


Assuntos
Anticorpos Biespecíficos , Antígenos CD19/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Anticorpos de Cadeia Única , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/isolamento & purificação , Células Hep G2 , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/isolamento & purificação
11.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814283

RESUMO

Understanding the immune parameters responsible for survival following Ebola virus (EBOV) infection is paramount for developing countermeasures. In lethal EBOV infections, levels of both NK and T cells decline drastically in the circulation and lymphoid tissues before death. However, the fate of these lymphocytes in viral replication sites remains unknown. In this study, reverse transcription-PCR (RT-PCR) and fluorescence-activated cell sorting (FACS) analysis were used to investigate lymphocyte frequencies in various infected mouse tissues after challenge with mouse-adapted EBOV (MA-EBOV). A decrease in NK cell numbers from systemic circulation was observed concomitant to an increase of these cells in tissues that are supporting active replication of EBOV. Unexpectedly, NK accumulation in virus replication sites correlated with enhanced EBOV disease progression in specific conditions; at a high challenge dose, NK-depleted mice displayed lower viremia and liver damage and higher hepatic T cell levels. Upregulation of UL16 binding protein 1 (ULBP-1) was detected in hepatic T cells, suggesting that NK cells participate in their elimination. Overall, this study supports the concept that NK cells accumulate in EBOV-infected tissues and can contribute to viral pathogenicity.IMPORTANCE Ebola virus (EBOV) outbreaks can claim numerous lives and also devastate the local health infrastructure, as well as the economy, of affected countries. Lethal EBOV infection has been documented to decrease the levels of several immune cells in the blood that are necessary to defend the host. This decrease in immune cells is, however, not observed in individuals who survive EBOV infection. Having a better grasp of how these immune cells are lost is therefore of high importance to develop and improve new and existing therapeutics. The significance of our research is in identifying the mechanism responsible for the apparent loss of immune cells in lethal EBOV infection. This will allow therapeutic options aimed at preventing the loss of these immune cells, therefore allowing infected individuals to better fight the infection.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/imunologia , Células Matadoras Naturais/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Ebolavirus/patogenicidade , Ebolavirus/fisiologia , Feminino , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/metabolismo , Linfócitos/metabolismo , Linfócitos/virologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T , Virulência , Replicação Viral/imunologia
12.
Biochem Biophys Res Commun ; 517(1): 84-88, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31303272

RESUMO

The immune system plays important roles in pancreatic cancer. MHC class I-chain-related proteins A and B (MICA/B) and UL16-binding proteins (ULBPs) are known natural killer group 2D (NKG2D) ligands. Soluble NKG2D ligands can inhibit the activation of Natural killer (NK) cells. In pancreatic cancer, soluble ULBPs are relatively unstudied in contrast to soluble MICA/B. We examined the significance of soluble ULBPs, especially ULBP2, in pancreatic cancer. Soluble ULBP2 but neither soluble ULBP1 nor soluble ULBP3, was etected in the supernatants of pancreatic cancer cells. Soluble ULBP2 derived from pancreatic cancer cells could reduce the cytotoxicity of NK cells. Multivariate analysis demonstrated that serum soluble ULBP2 was a significant independent factor associated with poor overall survival (OS) in all pancreatic cancer patients, specifically in stage IV patients. In conclusion, pancreatic cancer-derived soluble ULBP2 might affect the prognosis in pancreatic cancer.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/análise , Neoplasias Pancreáticas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/sangue , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Prognóstico , Análise de Sobrevida
13.
Immunol Rev ; 267(1): 72-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26284472

RESUMO

NKG2D ligands (NKG2DLs) are a group of stress-inducible major histocompatibility complex (MHC) class I-like molecules that act as a danger signal alerting the immune system to the presence of abnormal cells. In mammals, two families of NKG2DL genes have been identified: the MIC gene family encoded in the MHC region and the ULBP gene family encoded outside the MHC region in most species. Some mammals have a third family of NKG2DL-like class I genes which we named MILL (MHC class I-like located near the leukocyte receptor complex). Despite the fact that MILL genes are more closely related to MIC genes than ULBP genes are to MIC genes, MILL molecules do not function as NKG2DLs, and their function remains unknown. With the progress of mammalian genome projects, information on the MIC, ULBP, and MILL gene families became available in many mammalian species. Here, we summarize such information and discuss the origin and evolution of the NKG2DL gene family from the viewpoint of host-pathogen coevolution.


Assuntos
Genômica , Antígenos de Histocompatibilidade Classe I/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Filogenia , Animais , Evolução Molecular , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ligantes , Modelos Genéticos , Modelos Imunológicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética
14.
Proc Jpn Acad Ser B Phys Biol Sci ; 94(10): 441-453, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30541969

RESUMO

Non-human primates such as rhesus macaque and cynomolgus macaque are important animals for medical research. These species are classified as Old-World monkeys (Cercopithecidae), in which the immune-related genome structure is characterized by gene duplications. In the present study, we investigated polymorphisms in two genes for ULBP5 encoding ligands for NKG2D. We found 18 and 11 ULBP5.1 alleles and 11 and 13 ULBP5.2 alleles in rhesus macaques and cynomolgus macaques, respectively. In addition, phylogenetic analyses revealed that ULBP5.2 diverged from a branch of ULBP5.1. These data suggested that human ULBP genes diverged from an ancestral gene of ULBP2-ULBP5 and that ULBP6/RAET1L, specifically identified in human, diverged from an ancestral ULBP2 by a recent gene duplication after the diversification of homininae (human and other higher great apes), which were consistent with the findings in our previous analysis of ULBP2 genes in rhesus and cynomolgus macaques.


Assuntos
Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Animais , Cercopithecidae , Humanos , Filogenia
15.
Exp Mol Pathol ; 103(1): 56-70, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28684217

RESUMO

Interaction between the activating NKG2D receptor on lymphocytes and its ligands MICA, MICB, and ULBP1-6 modulate T and NK cell activity and may contribute to the pathogenesis of Crohn's disease (CD). NKG2D ligands are generally not expressed on the cell surface of normal, non-stressed cells, but expression of MICA and MICB in CD intestine has been reported. In this exploratory study, we further characterize the expression of NKG2D and its ligands, including the less well-described ULBP4-6, in CD, and test if NKG2D ligand interactions are involved in the migration of activated T cells into the affected mucosal compartments. Intestinal tissue from CD patients and healthy controls were analyzed by flow cytometry, mass cytometry, and immunohistochemistry for expression of NKG2D and ligands, and for cytokine release. Furthermore, NKG2D-dependent chemotaxis of activated CD8+ T cells across a monolayer of ligand-expressing human intestinal endothelial cells was examined. Activated lymphocytes down-regulated NKG2D expression upon accumulation in inflamed CD intestine. NKG2D expression on CD56+ T and γδ T cells from inflamed tissue seemed inversely correlated with CRP levels and cytokine release. B cells, monocytes, mucosal epithelium, and vascular endothelium expressed NKG2D ligands in inflamed CD intestine. The expression of NKG2D ligands was correlated with cytokine release, but was highly variable between patients. Stimulation of vascular intestinal endothelial cells in vitro induced expression of NKG2D ligands, including MICA/B and ULBP2/6. Blockade of NKG2D on CD8+ T cells inhibited the migration over ligand-expressing endothelial cells. Intestinal induction of NKG2D ligands and ligand-induced down-regulation of NKG2D in CD suggest that the NKG2D-ligand interaction may be involved in both the activation and recruitment of NKG2D+ lymphocytes into the inflamed CD intestine.


Assuntos
Linfócitos T CD8-Positivos/citologia , Movimento Celular , Doença de Crohn/genética , Regulação para Baixo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Adulto , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Ligantes , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Int J Mol Sci ; 18(9)2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28926962

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are immunologically-mediated, debilitating conditions resulting from destructive inflammation of the gastrointestinal tract. The pathogenesis of IBD is incompletely understood, but is considered to be the result of an abnormal immune response with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56⁺ T, and CD8⁺ T cells. Activation of NKG2D triggers cellular proliferation, cytokine production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance in the pathogenesis of CD. This review will describe the receptor and its ligands in intestinal tissues and the clinical potential of blocking NKG2D in Crohn's disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doença de Crohn/terapia , Fatores Imunológicos/uso terapêutico , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Anticorpos Monoclonais/imunologia , Doença de Crohn/imunologia , Humanos , Fatores Imunológicos/imunologia
17.
Tumour Biol ; 37(4): 5455-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26563374

RESUMO

Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.


Assuntos
Antígenos de Diferenciação de Linfócitos T/genética , Exossomos/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Antígenos de Diferenciação de Linfócitos T/biossíntese , Carcinoma Epitelial do Ovário , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/biossíntese , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Transdução de Sinais/genética
18.
Semin Cancer Biol ; 28: 24-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24602822

RESUMO

Human cancers constitutively produce and release endosome-derived nanometer-sized vesicles called exosomes that carry biologically active proteins, messenger and micro RNAs and serve as vehicles of intercellular communication. The tumour exosomes are present in the blood, urine and various malignant effusions such as peritoneal and pleural fluid of cancer patients and can modulate immune cells and responses thus deranging the immune system of cancer patients and giving advantage to the cancer to establish and spread itself. Here, the role of exosomes in the NKG2D receptor-ligand system's interactions is discussed. The activating NK cell receptor NKG2D and its multiple ligands, the MHC class I-related chain (MIC) A/B and the retinoic acid transcript-1/UL-16 binding proteins (RAET1/ULBP) 1-6 comprise a powerful stress-inducible danger detector system that targets infected, inflamed and malignantly transformed cells and plays a decisive role in anti-tumour immune surveillance. Mounting evidence reveals that the MIC- and RAET1/ULBP ligand family members are enriched in the endosomal compartment of various tumour cells and expressed and released into the intercellular space and bodily fluids on exosomes thus preserving their entire molecule, three-dimensional protein structure and biologic activity. The NKG2D ligand-expressing exosomes serve as decoys with a powerful ability to down regulate the cognate receptor and impair the cytotoxic function of NK-, NKT-, gamma/delta- and cytotoxic T cells. This review summarizes recent findings concerning the role of NKG2D receptor-ligand system in cancer with emphasis on regulation of NKG2D ligand expression and the immunosuppressive role of exosomally expressed NKG2D ligands.


Assuntos
Citotoxicidade Imunológica/imunologia , Exossomos/metabolismo , Vigilância Imunológica/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Ligantes
19.
FASEB J ; 27(6): 2440-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23395909

RESUMO

In humans, the interaction of the natural killer group 2 member D (NKG2D)-activating receptor on natural killer (NK) and CD8(+) T cells with its major histocompatibility complex class I-related chain (MIC) and UL16 binding protein (ULBP) ligands (NKG2DLs) promotes recognition and elimination of stressed cells, such as tumor or infected cells. Here, we investigated the capacity of HIV-1 to modulate NKG2DL expression and escape NGK2D-mediated immunosurveillance. In CD4(+) T lymphocytes, both cell surface expression and release of MICA, MICB, and ULBP2 were up-regulated >2-fold by HIV-1 infection. In HIV-infected CD4(+) T lymphocytes or Jurkat T-cell lines, increased shedding of soluble NKG2DLs (sNKG2DLs) was impaired by a matrix metalloproteinase inhibitor (MMPI). Moreover, naive HIV(+) patients displayed increased plasma sMICA and sULBP2 levels and reduced NKG2D expression on NK and CD8(+) T cells compared to patients receiving highly active antiretroviral therapy (HAART) or healthy donors. In individual patients, HAART uptake resulted in the drop of sNKG2DL and recovery of NKG2D expression. Finally, sNKG2DLs in patients' plasma down-regulated NKG2D on NK and CD8(+) T cells and impaired NKG2D-mediated cytotoxicity of NK cells. Thus, NKG2D detuning by sNKG2DLs may promote HIV-1 immune evasion and compromise host resistance to opportunistic infections, but HAART and MMPI have the potential to avoid such immune dysfunction.


Assuntos
Citotoxicidade Imunológica , Infecções por HIV/imunologia , HIV-1 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Adolescente , Adulto , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Estudos de Casos e Controles , Proteínas Ligadas por GPI/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Jurkat , Células K562 , Células Matadoras Naturais/metabolismo , Ligantes , Metaloproteinase 1 da Matriz/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/sangue , Adulto Jovem
20.
Heliyon ; 10(1): e23687, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205308

RESUMO

Breast cancer (BC) is one of the major dangerous tumors threatening women's lives. We here aimed to sort out prognostic immune-related genes by univariate Cox regression analysis and build a model of immune-related genes for forecasting the prognosis of BC patients. We identified UL16 binding protein 2 (ULBP2) as a valuable gene for study in the model using related databases and algorithms analysis. We found the stromal and immune cells scores were higher in ULBP2 high expression group and ULBP2 was related to kinds of immune cells, most importantly had negative correlation with CD8+ T cell. Notably, ULBP2 was positively correlated with tumor mutational burden (TMB) and had relationship with many immune checkpoints. Correlation analysis revealed that ULBP2 expression was closely linked to the clinicopathological characters and negatively related to BC patient survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed the functional enrichment of differential genes related to ULBP2. Gene Set Enrichment Analysis (GSEA) indicated pathway enrichment in ULBP2 high and low expression groups. In short, this study comprehensively investigated the potential function of ULBP2 in BC, which might make ULBP2 to be an important therapeutic target for BC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa