Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Acta Neuropathol ; 147(1): 9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175301

RESUMO

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , RNA Mensageiro/genética , Estatmina/genética
2.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739198

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteinopatias TDP-43/genética , Idoso , Expansão das Repetições de DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/genética , Progranulinas/genética , Progranulinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/biossíntese , Fatores de Risco , Análise de Sequência de RNA , Sociedades Científicas , Proteinopatias TDP-43/imunologia , População Branca/genética
3.
Neurol Sci ; 40(11): 2293-2302, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31201598

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease associated with both genetic and environmental risk factors. Previous studies trying to find an association between ALS and unc-13 homolog A (UNC13A) gene variants have shown inconsistent results. This study aimed to conduct a meta-analysis of the association between the C allele of rs12608932, a single-nucleotide polymorphism located in an intron of UNC13A, and risk of ALS and patient survival. METHODS: PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure, Wanfang, and SinoMed databases were systematically searched for genome-wide association studies or case-control studies published up to January 2019 on the association between this variant in UNC13A and risk and/or prognosis of ALS. Data from eligible studies were extracted and analyzed. RESULTS: The pooled data (28,072 patients with sporadic ALS and 56,545 controls) showed that rs12608932(C) was associated with an increased risk of ALS (OR = 1.13, 95%CI 1.07-1.20). Subgroup analysis revealed that rs12608932(C) increased the risk of sporadic ALS in non-Asian individuals, including those from the USA and Europe (OR 1.17, 95%CI 1.10-1.25, P < 0.000), but not in Japanese or Chinese subjects (OR 1.01, 95%CI 0.92-1.10, P = 0.85). The available data demonstrated that the CC genotype decreased the survival time of patients with ALS (OR 1.33, 95%CI 1.19-1.49, P < 0.001). CONCLUSION: The present meta-analysis suggests that rs12608932(C) is associated with increased ALS susceptibility, especially in Caucasian and European subjects, and that the CC genotype of rs12608932 is associated with reduced ALS patient survival.


Assuntos
Esclerose Lateral Amiotrófica , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Esclerose Lateral Amiotrófica/etnologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Humanos , Risco
4.
Neurosci Res ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723906

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including TARDBP. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we provide novel mechanistic insights into the splicing of UNC13A, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in UNC13A are the most common risk factors for ALS/FTD. We found that TDP-43 represses "cryptic exon" inclusion during UNC13A RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of UNC13A retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of TARDBP mRNA. We hypothesized that TARDBP methylation is altered by aging, thereby disrupting TDP-43 autoregulation. We found that demethylation reduces the efficiency of alternative splicing and increases TARDBP mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.

5.
Neurobiol Dis ; 60: 11-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23969236

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease, resulting in selective motor neuron degeneration and paralysis. Patients die approximately 3-5 years after diagnosis. Disease pathophysiology is multifactorial, including excitotoxicity, but is not yet fully understood. Genetic analysis has proven fruitful in the past to further understand genes modulating the disease and increase knowledge of disease mechanisms. Here, we revisit a previously performed microsatellite analysis in ALS and focus on another hit, PLCD1, encoding phospholipase C delta 1 (PLCδ1), to investigate its role in ALS. PLCδ1 may contribute to excitotoxicity as it increases inositol 1,4,5-trisphosphate (IP3) formation, which releases calcium from the endoplasmic reticulum through IP3 receptors. We find that expression of PLCδ1 is increased in ALS mouse spinal cord and in neurons from ALS mice. Furthermore, genetic ablation of this protein in ALS mice significantly increases survival, but does not affect astrogliosis, microgliosis, aggregation or the amount of motor neurons at end stage compared to ALS mice with PLCδ1. Interestingly, genetic ablation of PLCδ1 prevents nuclear shrinkage of motor neurons in ALS mice at end stage. These results indicate that PLCD1 contributes to ALS and that PLCδ1 may be a new target for future studies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fosfolipase C delta/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfolipase C delta/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Análise de Sobrevida
6.
Front Aging Neurosci ; 15: 1067954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819716

RESUMO

Background: The UNC13A gene is an established susceptibility locus for amyotrophic lateral sclerosis (ALS) and a determinant of shorter survival after disease onset, with up to 33.0 months difference in life expectancy for carriers of the rs12608932 risk genotype. However, its overall effect on other clinical features and ALS phenotypic variability is controversial. Methods: Genotype data of the UNC13A rs12608932 SNP (A-major allele; C-minor allele) was obtained from a cohort of 972 ALS patients. Demographic and clinical variables were collected, including cognitive and behavioral profiles, evaluated through the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) - Italian version and the Frontal Behavioral Inventory (FBI); upper and lower motor neuron involvement, assessed by the Penn Upper Motor Neuron Score (PUMNS) and the Lower Motor Neuron Score (LMNS)/Medical Research Council (MRC) scores, respectively; the ALS Functional Rating Scale Revised (ALSFRS-R) score at evaluation and progression rate; age and site of onset; survival. The comparison between the three rs12608932 genotypes (AA, AC, and CC) was performed using the additive, dominant, and recessive genetic models. Results: The rs12608932 minor allele frequency was 0.31 in our ALS cohort, in comparison to 0.33-0.41 reported in other Caucasian ALS populations. Carriers of at least one minor C allele (AC + CC genotypes) had a shorter median survival than patients with the wild-type AA genotype (-11.7 months, p = 0.013), even after adjusting for age and site of onset, C9orf72 mutational status and gender. Patients harboring at least one major A allele (AA + AC genotypes) and particularly those with the wild-type AA genotype showed a significantly higher PUMNS compared to CC carriers (p = 0.015 and padj = 0.037, respectively), thus indicating a more severe upper motor neuron involvement. Our analysis did not detect significant associations with all the other clinical parameters considered. Conclusion: Overall, our findings confirm the role of UNC13A as a determinant of survival in ALS patients and show the association of this locus also with upper motor neuron involvement.

7.
Cell Rep ; 42(6): 112541, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243591

RESUMO

Presynaptic plasticity adjusts neurotransmitter (NT) liberation. Short-term facilitation (STF) tunes synapses to millisecond repetitive activation, while presynaptic homeostatic potentiation (PHP) of NT release stabilizes transmission over minutes. Despite different timescales of STF and PHP, our analysis of Drosophila neuromuscular junctions reveals functional overlap and shared molecular dependence on the release-site protein Unc13A. Mutating Unc13A's calmodulin binding domain (CaM-domain) increases baseline transmission while blocking STF and PHP. Mathematical modeling suggests that Ca2+/calmodulin/Unc13A interaction plastically stabilizes vesicle priming at release sites and that CaM-domain mutation causes constitutive stabilization, thereby blocking plasticity. Labeling the functionally essential Unc13A MUN domain reveals higher STED microscopy signals closer to release sites following CaM-domain mutation. Acute phorbol ester treatment similarly enhances NT release and blocks STF/PHP in synapses expressing wild-type Unc13A, while CaM-domain mutation occludes this, indicating common downstream effects. Thus, Unc13A regulatory domains integrate signals across timescales to switch release-site participation for synaptic plasticity.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Calmodulina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Drosophila/metabolismo , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Plasticidade Neuronal
8.
Mol Neurodegener ; 18(1): 16, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922834

RESUMO

TDP-43 is an RNA-binding protein with a crucial nuclear role in splicing, and mislocalises from the nucleus to the cytoplasm in a range of neurodegenerative disorders. TDP-43 proteinopathy spans a spectrum of incurable, heterogeneous, and increasingly prevalent neurodegenerative diseases, including the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum and a significant fraction of Alzheimer's disease. There are currently no directed disease-modifying therapies for TDP-43 proteinopathies, and no way to distinguish who is affected before death. It is now clear that TDP-43 proteinopathy leads to a number of molecular changes, including the de-repression and inclusion of cryptic exons. Importantly, some of these cryptic exons lead to the loss of crucial neuronal proteins and have been shown to be key pathogenic players in disease pathogenesis (e.g., STMN2), as well as being able to modify disease progression (e.g., UNC13A). Thus, these aberrant splicing events make promising novel therapeutic targets to restore functional gene expression. Moreover, presence of these cryptic exons is highly specific to patients and areas of the brain affected by TDP-43 proteinopathy, offering the potential to develop biomarkers for early detection and stratification of patients. In summary, the discovery of cryptic exons gives hope for novel diagnostics and therapeutics on the horizon for TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Proteinopatias TDP-43 , Humanos , Demência Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteinopatias TDP-43/metabolismo , Neurônios/metabolismo , Éxons/genética , Doenças Neurodegenerativas/metabolismo
9.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887320

RESUMO

C9orf72 mutations are the most common form of familial amyotrophic lateral sclerosis (C9-ALS). It causes the production of proline-arginine dipeptide repeat proteins (PR-DPRs) in motor neurons (MNs), leading to the molecular pathology characteristic of ALS. UNC13A is critical for maintaining the synaptic function of MNs. Most ALS patients have nuclear deletion of the splicing repressor TDP-43 in MNs, which causes inclusion of the cryptic exon (CE) of UNC13A mRNA, resulting in nonsense-mediated mRNA decay and reduced protein expression. Therefore, in this study, we explored the role of PR-DPR in CE inclusion of UNC13A mRNA. Our results showed that PR-DPR (PR50) induced CE inclusion and decreased the protein expression of UNC13A in human neuronal cell lines. We also identified an interaction between the RNA-binding protein NOVA1 and PR50 by yeast two-hybrid screening. NOVA1 expression is known to be reduced in patients with ALS. We found that knockdown of NOVA1 enhanced CE inclusion of UNC13A mRNA. Furthermore, the naturally occurring triterpene betulin can inhibit the interaction between NOVA1 and PR50, thus preventing CE inclusion of UNC13A mRNA and protein reduction in human neuronal cell lines. This study linked PR-DPR with CE inclusion of UNC13A mRNA and developed candidate therapeutic strategies for C9-ALS using betulin.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Arginina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Neurônios Motores/patologia , Antígeno Neuro-Oncológico Ventral , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Clin Transl Med ; 12(5): e818, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567447

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating human neurodegenerative diseases. A hallmark pathological feature of both diseases is the depletion of the RNA-binding protein TDP-43 from the nucleus in the brain and spinal cord of patients. A major function of TDP-43 is to repress the inclusion of cryptic exons during RNA splicing. When it becomes depleted from the nucleus in disease, this function is lost, and recently, several key cryptic splicing targets of TDP-43 have emerged, including STMN2, UNC13A, and others. UNC13A is a major ALS/FTD risk gene, and the genetic variations that increase the risk for disease seem to do so by making the gene more susceptible to cryptic exon inclusion when TDP-43 function is impaired. Here, we discuss the prospects and challenges of harnessing these cryptic splicing events as novel therapeutic targets and biomarkers. Deciphering this new cryptic code may be a touchstone for ALS and FTD diagnosis and treatment.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos
11.
Trials ; 23(1): 978, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471413

RESUMO

BACKGROUND: Given the large genetic heterogeneity in amyotrophic lateral sclerosis (ALS), it seems likely that genetic subgroups may benefit differently from treatment. An exploratory meta-analysis identified that patients homozygous for the C-allele at SNP rs12608932, a single nucleotide polymorphism in the gene UNC13A, had a statistically significant survival benefit when treated with lithium carbonate. We aim to confirm the efficacy of lithium carbonate on the time to death or respiratory insufficiency in patients with ALS homozygous for the C-allele at SNP rs12608932 in UNC13A. METHODS: A randomized, group-sequential, event-driven, double-blind, placebo-controlled trial will be conducted in 15 sites across Europe and Australia. Patients will be genotyped for UNC13A; those homozygous for the C-allele at SNP rs12608932 will be eligible. Patients must have a diagnosis of ALS according to the revised El Escorial criteria, and a TRICALS risk-profile score between -6.0 and -2.0. An expected number of 1200 patients will be screened in order to enroll a target sample size of 171 patients. Patients will be randomly allocated in a 2:1 ratio to lithium carbonate or matching placebo, and treated for a maximum duration of 24 months. The primary endpoint is the time to death or respiratory insufficiency, whichever occurs first. Key secondary endpoints include functional decline, respiratory function, quality of life, tolerability, and safety. An interim analysis for futility and efficacy will be conducted after the occurrence of 41 events. DISCUSSION: Lithium carbonate has been proven to be safe and well-tolerated in patients with ALS. Given the favorable safety profile, the potential benefits are considered to outweigh the burden and risks associated with study participation. This study may provide conclusive evidence about the life-prolonging potential of lithium carbonate in a genetic ALS subgroup. TRIAL REGISTRATION: EudraCT number 2020-000579-19 . Registered on 29 March 2021.


Assuntos
Esclerose Lateral Amiotrófica , Insuficiência Respiratória , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Carbonato de Lítio/efeitos adversos , Polimorfismo de Nucleotídeo Único , Alelos , Qualidade de Vida , Insuficiência Respiratória/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Metanálise como Assunto
12.
Cureus ; 14(10): e30774, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36447687

RESUMO

Uncoordinated 13 (UNC13A) affects movement in Caenorhabditis elegans (C. elegans). It is responsible for docking, priming, and stabilizing synaptic vesicle fusion complexes in the neuronal synapse and neuromuscular junction (NMJ). It also plays an important role in central nervous system development. We report the detailed clinical history and central nervous system neuropathologic findings in an infantile case with homozygous UNC13A loss of function variant, in order to advance the understanding of this critically important synaptic vesicle protein. This is the first detailed central nervous system neuropathologic report of this rare case of homozygous UNC13A loss.

13.
Artigo em Inglês | MEDLINE | ID: mdl-27584932

RESUMO

Our objective was to identify whether rare genetic variation in amyotrophic lateral sclerosis (ALS) candidate survival genes modifies ALS survival. Candidate genes were selected based on evidence for modifying ALS survival. Each tail of the extreme 1.5% of survival was selected from the UK MND DNA Bank and all samples available underwent whole genome sequencing. A replication set from the Netherlands was used for validation. Sequences of candidate survival genes were extracted and variants passing quality control with a minor allele frequency ≤0.05 were selected for association testing. Analysis was by burden testing using SKAT. Candidate survival genes UNC13A, KIFAP3, and EPHA4 were tested for association in a UK sample comprising 25 short survivors and 25 long survivors. Results showed that only SNVs in UNC13A were associated with survival (p = 6.57 × 10-3). SNV rs10419420:G > A was found exclusively in long survivors (3/25) and rs4808092:G > A exclusively in short survivors (4/25). These findings were not replicated in a Dutch sample. In conclusion, population specific rare variants of UNC13A may modulate survival in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Estudos de Coortes , Proteínas do Citoesqueleto/genética , Bases de Dados Bibliográficas/estatística & dados numéricos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Receptor EphA4/genética , Análise de Sobrevida , Fatores de Tempo , Reino Unido/epidemiologia
14.
J Neurol ; 262(10): 2285-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26162714

RESUMO

To investigate the association of functional variants of the human UNC13A gene with the risk of ALS, survival and the disease progression rate in a Spanish ALS cohort. 136 sporadic ALS (sALS) patients and 487 healthy controls were genotyped for the UNC13A rs12608932 variant. Clinical characterization of ALS patients included gender, age at first symptom, initial topography, disease progression rate, and survival. Genetic association was analyzed under five inheritance models. The sALS patients with the rs12608932(CC) genotype had an increased risk of ALS under a recessive genetic model [OR 2.16; 95 % CI (1.23, 3.8), p = 0.009; corrected p = 0.028]. Genotypes with a C allele are also associated with increased risk [OR 1.47; 95 % CI (1.11, 1.95); p = 0.008; corrected p = 0.023] under an additive model. sALS patients with a C/C genotype had a shorter survival than patients with A/A and A/C genotypes [HR 1.44; 95 % CI (1.11, 1.873); p = 0.007] under a recessive model. In an overdominant model, heterozygous patients had a longer survival than homozygous patients [HR 0.36; 95 % CI (0.22, 0.59); p = 0.001]. The rs12608932 genotypes modify the progression of symptoms measured using the ALSFRS-R. No association with age of onset, initial topography or rate of decline in FVC was found. Our results show that rs12608932 is a risk factor for ALS in the Spanish population and replicate the findings described in other populations. The rs12608932 is a modifying factor for survival and disease progression rate in our series. Our results also corroborated that it did not influence the age of onset.


Assuntos
Esclerose Lateral Amiotrófica/genética , Progressão da Doença , Proteínas do Tecido Nervoso/genética , Idoso , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/fisiopatologia , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Risco , Espanha
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa