Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 299(11): 105355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858676

RESUMO

Uncoordinated protein 45A (UNC-45A) is the only known ATP-independent microtubule (MT)-severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells, UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT-severing proteins on MT lattice curvature is largely undefined. Here, we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and total internal fluorescence microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT-straightening effects of the drug.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos , Paclitaxel , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Paclitaxel/farmacologia , Paclitaxel/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Subcell Biochem ; 101: 189-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520308

RESUMO

The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones specific for the folding, assembly, and function of myosin. UCS proteins participate in various myosin-dependent cellular processes including myofibril organization and muscle functions, cell differentiation, striated muscle development, cytokinesis, and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in myosin-dependent cellular processes. UCS proteins that contain an N-terminal tetratricopeptide repeat (TPR) domain are called UNC-45. Vertebrates usually possess two variants of UNC-45, the ubiquitous general-cell UNC-45 (UNC-45A) and the striated muscle UNC-45 (UNC-45B), which is exclusively expressed in skeletal and cardiac muscles. Except for the TPR domain in UNC-45, UCS proteins comprise of several irregular armadillo (ARM) repeats that are organized into a central domain, a neck region, and the canonical C-terminal UCS domain that functions as the chaperoning module. With or without TPR, UCS proteins form linear oligomers that serve as scaffolds that mediate myosin folding, organization into myofibrils, repair, and motility. This chapter reviews emerging functions of these proteins with a focus on UNC-45 as a dedicated chaperone for folding, assembly, and function of myosin at protein and potentially gene levels. Recent experimental evidences strongly support UNC-45 as an absolute regulator of myosin, with each domain of the chaperone playing different but complementary roles during the folding, assembly, and function of myosin, as well as recruiting Hsp90 as a co-chaperone to optimize key steps. It is becoming increasingly clear that UNC-45 also regulates the transcription of several genes involved in myosin-dependent cellular processes.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/genética , Miosinas/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo
3.
J Hepatol ; 79(4): 945-954, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328071

RESUMO

BACKGROUND & AIMS: Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS: A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS: One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS: c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS: The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.


Assuntos
Colestase , Peptídeos e Proteínas de Sinalização Intracelular , Linfedema , Humanos , Recém-Nascido , Regiões 5' não Traduzidas/genética , Proteínas de Transporte/genética , Colestase/genética , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfedema/diagnóstico , Linfedema/genética , Linfedema/metabolismo , Miosinas/genética , Miosinas/metabolismo
4.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217308

RESUMO

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Alelos , Animais , Caenorhabditis elegans , Feminino , Variação Genética , Humanos , Mutação com Perda de Função , Masculino , Músculo Esquelético/patologia , Miofibrilas , Miosinas , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transgenes , Sequenciamento do Exoma , Adulto Jovem
5.
J Cell Sci ; 134(1)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33262310

RESUMO

In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos , Animais , Humanos , Chaperonas Moleculares , Miosina Tipo II/genética , Miosinas , Ratos
6.
J Biol Chem ; 294(14): 5246-5260, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737284

RESUMO

Cumulative evidence suggests that the heat shock protein 90 (Hsp90) co-chaperone UNC-45 myosin chaperone A (UNC45A) contributes to tumorigenesis and that its expression in cancer cells correlates with proliferation and metastasis of solid tumors. However, the molecular mechanism by which UNC45A regulates cancer cell proliferation remains largely unknown. Here, using siRNA-mediated gene silencing and various human cells, we report that UNC45A is essential for breast cancer cell growth, but is dispensable for normal cell proliferation. Immunofluorescence microscopy, along with gene microarray and RT-quantitative PCR analyses, revealed that UNC45A localizes to the cancer cell nucleus, where it up-regulates the transcriptional activity of the glucocorticoid receptor and thereby promotes expression of the mitotic kinase NIMA-related kinase 7 (NEK7). We observed that UNC45A-deficient cancer cells exhibit extensive pericentrosomal material disorganization, as well as defects in centrosomal separation and mitotic chromosome alignment. Consequently, these cells stalled in metaphase and cytokinesis and ultimately underwent mitotic catastrophe, phenotypes that were rescued by heterologous NEK7 expression. Our results identify a key role for the co-chaperone UNC45A in cell proliferation and provide insight into the regulatory mechanism. We propose that UNC45A represents a promising new therapeutic target to inhibit cancer cell growth in solid tumor types.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quinases Relacionadas a NIMA/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Feminino , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células MCF-7 , Mitose/genética , Quinases Relacionadas a NIMA/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Células PC-3
7.
Proc Natl Acad Sci U S A ; 111(34): 12390-5, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114250

RESUMO

Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin-specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end-directed motor that moves actin filaments in a gliding assay (∼ 430 nm · s(-1) at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (k(cat) ∼ 6 s(-1)) was similar to the actin-detachment rate (k(det) = 6.2 s(-1)) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells.


Assuntos
Miosinas/isolamento & purificação , Miosinas/metabolismo , Estereocílios/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Calmodulina/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Chaperonas Moleculares , Dados de Sequência Molecular , Cadeias Leves de Miosina/metabolismo , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/isolamento & purificação , Subfragmentos de Miosina/metabolismo , Miosinas/genética , Pinças Ópticas , Dobramento de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera
8.
Genesis ; 54(8): 431-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27295336

RESUMO

Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off-target effects the therapeutic gene should be driven by a tissue-specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue-specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle-specific expression but presents heat-shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b-deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle-specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431-438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Regiões Promotoras Genéticas , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Especificidade de Órgãos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra
9.
J Muscle Res Cell Motil ; 37(3): 71-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27334505

RESUMO

Unc45 myosin chaperone b(unc45b)gene is a molecular chaperone that mediates the folding, assembly and accumulation of thick-filament myosin in the formation of sarcomere, which plays an important role in the development of striated muscle and the stability of sarcomere. In this study, the complete cDNA sequence of unc45b gene of grass carp was obtained by rapid amplification of cDNA ends (RACE), and the characteristics of the unc45b protein predicted from gene sequence was analyzed by bioinformatics methods. The differential expression pattern in tissues was also detected by quantitative real-time PCR. The results showed that the full-length of unc45b gene of grass carp is 3163 bp, which contains a 60 bp 5'UTR, a 298 bp 3'UTR, and a 2865 bp open reading frame (ORF) encoding a 934 amino acid peptide. The deduced unc45b protein exhibits a homology of 92, 86, 86 % with the protein of zebrafish (Danio rerio), channel catfish (Ietalurus punctatus) and tilapia (Oreochromis niloticus) respectively, and the protein contains UCS myosin head binding domain and TPR peptide repeat domain. The protein is a hydrophilic and non-secretory protein with a molecular mass and isoeletronic point of 103,699.8 and 7.39 Da. The structural elements of the protein includes α-helixes and loops, and the unc45b gene highly expresses in skeletal muscle and heart in grass carp. This study laid a foundation for further research in explaining the myofibril accumulation in crisped grass carp.


Assuntos
Clonagem Molecular/métodos , Miosina não Muscular Tipo IIB/genética , Animais , Carpas
10.
Dev Biol ; 390(1): 26-40, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24613615

RESUMO

Despite the prevalence of developmental myopathies resulting from muscle fiber defects, the earliest stages of myogenesis remain poorly understood. Unc45b is a molecular chaperone that mediates the folding of thick-filament myosin during sarcomere formation; however, Unc45b may also mediate specific functions of non-muscle myosins (NMMs). unc45b Mutants have specific defects in striated muscle development, which include myocyte detachment indicative of dysfunctional adhesion complex formation. Given the necessity for non-muscle myosin function in the formation of adhesion complexes and premyofibril templates, we tested the hypothesis that the unc45b mutant phenotype is not mediated solely by interaction with muscle myosin heavy chain (mMHC). We used the advantages of a transparent zebrafish embryo to determine the temporal and spatial patterns of expression for unc45b, non-muscle myosins and mMHC in developing somites. We also examined the formation of myocyte attachment complexes (costameres) in wild-type and unc45b mutant embryos. Our results demonstrate co-expression and co-regulation of Unc45b and NMM in myogenic tissue several hours before any muscle myosin heavy chain is expressed. We also note deficiencies in the localization of costamere components and NMM in unc45b mutants that is consistent with an NMM-mediated role for Unc45b during early myogenesis. This represents a novel role for Unc45b in the earliest stages of muscle development that is independent of muscle mMHC folding.


Assuntos
Costâmeros/genética , Chaperonas Moleculares/genética , Miofibrilas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Costâmeros/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Microscopia Confocal , Chaperonas Moleculares/metabolismo , Proteínas Musculares , Mutação , Mioblastos/metabolismo , Miofibrilas/metabolismo , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Somitos/embriologia , Somitos/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Curr Pediatr Rev ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38375845

RESUMO

BACKGROUND: Cholestatic liver disease is an important cause of morbidity and mortality and a leading indication for liver transplantation in children. These include diseases, such as biliary atresia, Alagille syndrome, progressive familial intrahepatic cholestasis, sclerosing cholangitis, bile acid synthesis defects, and many others. CASE PRESENTATION: NGS was used as a diagnostic tool to identify the genetic cause in the patient with cholestatic syndrome and to figure out and describe what mutation will be found. In the present observation, the cholestasis syndrome with low GGT activity and intense pruritus was the leading symptom of the patient. The examination also revealed other characteristic features of osteo- oto-hepato-enteric syndrome. The patient had facial features that mimicked Alagille syndrome, which complicated the diagnostic search. Moreover, the genetic test revealed two new pathogenic variants in the UNC45A gene. CONCLUSION: This clinical observation demonstrates the importance of a multidisciplinary approach in the diagnosis of rare genetic diseases and using WES, which can accelerate the diagnosis compared with outdated gene panels.

12.
Heliyon ; 10(10): e31276, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803956

RESUMO

Uncoordinated mutant number-45 myosin chaperone A (UNC-45A), a protein highly conserved throughout evolution, is ubiquitously expressed in somatic cells. It is correlated with tumorigenesis, proliferation, metastasis, and invasion of multiple malignant tumors. The current understanding of the role of UNC-45A in tumor progression is mainly related to the regulation of non-muscle myosin II (NM-II). However, many studies have suggested that the mechanisms by which UNC-45A is involved in tumor progression are far greater than those of NM-II regulation. UNC-45A can also promote tumor cell proliferation by regulating checkpoint kinase 1 (ChK1) phosphorylation or the transcriptional activity of nuclear receptors, and induces chemoresistance to paclitaxel in tumor cells by destabilizing microtubule activity. In this review, we discuss the recent advances illuminating the role of UNC-45A in tumor progression. We also put forward therapeutic strategies targeting UNC-45A, in the hope of paving the way the development of UNC-45A-targeted therapies for patients with malignant tumors.

13.
Eur J Med Genet ; 66(2): 104693, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587802

RESUMO

Unexplained diarrhea and cholestasis are common clinical phenotypes in newborns, indicating there is only a little common genetic basis for these conditions. However, it has been reported that defects in the UNC45A gene can lead to osteo-oto-hepato-enteric syndrome. However, to date, only 10 patients with this syndrome have been reported in 2 studies; therefore, there is still a lack of analysis regarding the correlation between disease phenotype and genotype. Trio-whole exome sequencing was conducted using DNA samples from a newborn with congenital diarrhea and cholestasis from a Chinese Han family. The UNC45A variants were verified using Sanger sequencing. In addition, we applied a crystal structure model to analyze the potential hazards associated with the variants. The plasmids were constructed in vitro and transfected into human 293T cells for Western blot (WB) analysis. After the mutant protein was fused with the Green Fluorescent Protein label, intracellular localization was observed using laser confocal microscopy. The gene detection results showed that the UNC45A gene of the newborn examined in the present study harbored the compound heterozygous variants p.Arg819Ter, and p.Leu237Pro; this was confirmed via Sanger sequencing. Analysis of the Leu237Pro crystal structure model suggested that this variant may decrease local structural stability and affect protein function. The Western blot and laser confocal microscopy observation results suggested that the Leu237Pro mutation leads to reduced protein expression, while the Arg819Ter mutation completely inhibits the expression of the protein. The compound heterozygous variants of UNC45A (p.Arg819Ter and p.Leu237Pro) may be pathogenic factors of congenital diarrhea and cholestasis in this neonatal patient. Therefore, UNC45A deficiency should be considered when intractable diarrhea and cholestasis occur in newborns.


Assuntos
Síndrome Brânquio-Otorrenal , Colestase , Humanos , Recém-Nascido , População do Leste Asiático , Mutação , Síndrome Brânquio-Otorrenal/genética , Chaperonas Moleculares/genética , Diarreia , Peptídeos e Proteínas de Sinalização Intracelular/genética
14.
Clin Chim Acta ; 531: 12-16, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35292251

RESUMO

Myofibrillar myopathy (MFM) is characterized by phenotypic heterogeneity; decreased function of the myosin-directed chaperone, UNC-45B protein, leads to MFM II, which is characterized by slow progressive proximal myasthenia. Currently, only two studies have reported 11 cases worldwide. This study aimed to conduct genetic research and etiological analysis of a neonatal case of perinatal myasthenia who eventually died due to autonomic dyspnea. The case involved a newborn female admitted for weak cries and groaning. Physical examination revealed shallow and irregular spontaneous breathing, difficulty feeding, hip flexion and knee flexion in both lower limbs, hypotonia (level 1), less translation action, and inability to resist gravity. The child died at 23 days after birth. Gene testing, mutation analysis, and crystal structure analysis were conducted. Cell culture and plasmid construction were conducted, followed by western blot analysis. Pathological changes, including Z-line breakage, were observed in the muscle biopsies of different tissues. Gene testing showed that UNC-45B had a novel compound heterozygous mutation (c.2357T>A/p.Met786Lys, c.2591A>C/p.His864Pro), and in vitro functional experiments showed that the variants could lead to a decrease in protein expression. This study expands the UNC-45B mutation and phenotype spectrum by reporting an MFM II case in a Chinese patient for the first time.


Assuntos
Miopatias Congênitas Estruturais , Feminino , Humanos , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Fenótipo
15.
Front Genet ; 13: 1079481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699472

RESUMO

Background: Recently, UNC45 myosin chaperone A (UNC45A) deficiency was identified as a cause of osteo-oto-hepato-enteric syndrome (O2HE) characterized by congenital diarrhea, neonatal cholestasis, deafness, and bone fragility. To date, only a few O2HE cases have been reported in the literature. Case presentation: Here, we present a child from China diagnosed with O2HE with novel compound heterozygous variants in UNC45A. The patient suffered with neonatal jaundice, cholestasis, and intractable diarrhea after birth. Laboratory tests revealed highly elevated levels of total serum bilirubin (TB), direct bilirubin (DB), and total bile acid (TBA). The patient was managed with ursodeoxycholic acid (UDCA)-based treatments, and the clinical symptoms and abnormal liver functions were significantly relieved. The patient's hearing was normal, and no sign of bone fragility was observed. Exome sequencing (ES) identified novel compound heterozygote variants c.292C>T (p.Arg98Trp)/c.2534-2545del (p.Leu845-Met848del) in UNC45A, which were inherited from her mother and father, respectively. Both variants are predicted to be deleterious by in silico predictors. Conclusion: We present an O2HE child from China with novel compound heterozygous variants in UNC45A. Our patient's clinical manifestations were less severe than those of the previous reported cases, which expands the clinical spectrum of O2HE.

16.
Cell Mol Gastroenterol Hepatol ; 14(2): 295-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421597

RESUMO

BACKGROUND & AIMS: UNC45A is a myosin (co-)chaperone, and mutations in the UNC45A gene were recently identified in osteo-oto-hepato-enteric (O2HE) syndrome patients presenting with congenital diarrhea and intrahepatic cholestasis. Congenital diarrhea and intrahepatic cholestasis are also the prime symptoms in patients with microvillus inclusion disease (MVID) and mutations in MYO5B, encoding the recycling endosome-associated myosin Vb. The aim of this study was to determine whether UNC45A and myosin Vb are functionally linked. METHODS: CRISPR-Cas9 gene editing and site-directed mutagenesis were performed with intestinal epithelial and hepatocellular cell lines, followed by Western blotting, quantitative polymerase chain reaction, and scanning electron and/or confocal fluorescence microscopy to determine the relationship between (mutants of) UNC45A and myosin Vb. RESULTS: UNC45A depletion in intestinal and hepatic cells reduced myosin Vb protein expression, and in intestinal epithelial cells, it affected 2 myosin Vb-dependent processes that underlie MVID pathogenesis: rat sarcoma-associated binding protein (RAB)11A-positve recycling endosome positioning and microvilli development. Reintroduction of UNC45A in UNC45A-depleted cells restored myosin Vb expression, and reintroduction of UNC45A or myosin Vb, but not the O2HE patient UNC45A-c.1268T>A variant, restored recycling endosome positioning and microvilli development. The O2HE patient-associated p.V423D substitution, encoded by the UNC45A-c.1268T>A variant, impaired UNC45A protein stability but as such not the ability of UNC45A to promote myosin Vb expression and microvilli development. CONCLUSIONS: A functional relationship exists between UNC45A and myosin Vb, thereby connecting 2 rare congenital diseases with overlapping enteropathy at the molecular level. Protein instability rather than functional impairment underlies the pathogenicity of the O2HE syndrome-associated UNC45A-p.V423D mutation.


Assuntos
Colestase Intra-Hepática , Diarreia , Peptídeos e Proteínas de Sinalização Intracelular , Síndromes de Malabsorção , Mucolipidoses , Miosina Tipo V , Colestase Intra-Hepática/genética , Diarreia/congênito , Diarreia/genética , Enterócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosinas/metabolismo , Doenças Raras
17.
Artigo em Inglês | MEDLINE | ID: mdl-35331396

RESUMO

Congenital enteropathies (CE) are a group of rare inherited diseases with a typical onset early in life. They involve defects in enterocyte structure or differentiation. They can cause a severe condition of intestinal failure (IF). The diagnostic approach is based first on clinical presentation (consanguinity, prenatal expression, polyhydramnios, early neonatal onset, aspect of stools, persistence at bowel rest, associated extra-digestive manifestations….) and histo-pathological analyses. These rare intestinal diseases cause protracted diarrhea that might resolve, for a few, with a dietetic approach. However, protracted or permanent IF may require long term parenteral nutrition and, in limited cases, intestinal transplantation. With the progresses in both clinical nutrition and genetics, many of these CE are nowadays associated with recognized gene mutations. It improved our knowledge and the understanding in the patho-physiology of these diseases, thus, leading potentially to therapeutic perspectives. These review cover most of the early onset CE and excludes the immune related diarrhea.


Assuntos
Enterócitos , Enteropatias , Diarreia/etiologia , Diarreia/terapia , Enterócitos/patologia , Humanos , Recém-Nascido , Enteropatias/diagnóstico , Enteropatias/genética , Enteropatias/terapia , Intestinos/patologia , Nutrição Parenteral
18.
Cells ; 10(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206743

RESUMO

UNC-45A (Protein unc-45 homolog A) is a cytoskeletal-associated protein with a dual and non-mutually exclusive role as a regulator of the actomyosin system and a Microtubule (MT)-destabilizing protein, which is overexpressed in human cancers including in ovarian cancer patients resistant to the MT-stabilizing drug paclitaxel. Mapping of UNC-45A in the mouse upper genital tract and central nervous system reveals its enrichment not only in highly proliferating and prone to remodeling cells, but also in microtubule-rich areas, of the ovaries and the nervous system, respectively. In both apparatuses, UNC-45A is also abundantly expressed in the ciliated epithelium. As regulators of actomyosin contractility and MT stability are essential for the physiopathology of the female reproductive tract and of neuronal development, our findings suggest that UNC-45A may have a role in ovarian cancer initiation and development as well as in neurodegeneration.


Assuntos
Genitália/citologia , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Sistema Nervoso/metabolismo , Animais , Proliferação de Células , Cílios/metabolismo , Tubas Uterinas/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Ovário/metabolismo , Medula Espinal/metabolismo
19.
Protein Sci ; 30(11): 2221-2232, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34515376

RESUMO

Proper muscle development and function depend on myosin being properly folded and integrated into the thick filament structure. For this to occur the myosin chaperone UNC-45, or UNC-45B, must be present and able to chaperone myosin. Here we use a combination of in vivo C. elegans experiments and in vitro biophysical experiments to analyze the effects of six missense mutations in conserved regions of UNC-45/UNC-45B. We found that the phenotype of paralysis and disorganized thick filaments in 5/6 of the mutant nematode strains can likely be attributed to both reduced steady state UNC-45 protein levels and reduced chaperone activity. Interestingly, the biophysical assays performed on purified proteins show that all of the mutations result in reduced myosin chaperone activity but not overall protein stability. This suggests that these mutations only cause protein instability in the in vivo setting and that these conserved regions may be involved in UNC-45 protein stability/regulation via posttranslational modifications, protein-protein interactions, or some other unknown mechanism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Chaperonas Moleculares/genética , Estabilidade Proteica
20.
Cancer Biol Ther ; 20(10): 1304-1313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31328624

RESUMO

UNC-45A is an ubiquitously expressed protein highly conserved throughout evolution. Most of what we currently know about UNC-45A pertains to its role as a regulator of the actomyosin system. However, emerging studies from both our and other laboratories support a role of UNC-45A outside of actomyosin regulation. This includes studies showing that UNC-45A: regulates gene transcription, co-localizes and biochemically co-fractionates with gamma tubulin and regulates centrosomal positioning, is found in the same subcellular fractions where MT-associated proteins are, and is a mitotic spindle-associated protein with MT-destabilizing activity in absence of the actomyosin system. Here, we extended our previous findings and show that UNC45A is variably expressed across a spectrum of cell lines with the highest level being found in HeLa cells and in ovarian cancer cells inherently paclitaxel-resistant. Furthermore, we show that UNC-45A is preferentially expressed in epithelial cells, localizes to mitotic spindles in clinical tumor specimens of cancer and co-localizes and co-fractionates with MTs in interphase cells independent of actin or myosin. In sum, we report alteration of UNC45A localization in the setting of chemotherapeutic treatment of cells with paclitaxel, and localization of UNC45A to MTs both in vitro and in vivo. These findings will be important to ongoing and future studies in the field that further identify the important role of UNC45A in cancer and other cellular processes.


Assuntos
Células Epiteliais/metabolismo , Interfase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microtúbulos/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Especificidade de Órgãos , Ligação Proteica , Transporte Proteico , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa