Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Mol Cell ; 83(14): 2478-2492.e8, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369201

RESUMO

The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.


Assuntos
Proteínas Argonautas , MicroRNAs , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligação Proteica , Células-Tronco/metabolismo , Mamíferos/metabolismo
2.
Mol Cell ; 82(15): 2779-2796.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35675814

RESUMO

Despite a long appreciation for the role of nonsense-mediated mRNA decay (NMD) in destroying faulty, disease-causing mRNAs and maintaining normal, physiologic mRNA abundance, additional effectors that regulate NMD activity in mammalian cells continue to be identified. Here, we describe a haploid-cell genetic screen for NMD effectors that has unexpectedly identified 13 proteins constituting the AKT signaling pathway. We show that AKT supersedes UPF2 in exon-junction complexes (EJCs) that are devoid of RNPS1 but contain CASC3, defining an unanticipated insulin-stimulated EJC. Without altering UPF1 RNA binding or ATPase activity, AKT-mediated phosphorylation of the UPF1 CH domain at T151 augments UPF1 helicase activity, which is critical for NMD and also decreases the dependence of helicase activity on ATP. We demonstrate that upregulation of AKT signaling contributes to the hyperactivation of NMD that typifies Fragile X syndrome, as exemplified using FMR1-KO neural stem cells derived from induced pluripotent stem cells.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Proto-Oncogênicas c-akt , Animais , Códon sem Sentido/genética , Éxons/genética , Mamíferos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Cell ; 78(1): 70-84.e6, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017897

RESUMO

Post-transcriptional mechanisms regulate the stability and, hence, expression of coding and noncoding RNAs. Sequence-specific features within the 3' untranslated region (3' UTR) often direct mRNAs for decay. Here, we characterize a genome-wide RNA decay pathway that reduces the half-lives of mRNAs based on overall 3' UTR structure formed by base pairing. The decay pathway is independent of specific single-stranded sequences, as regulation is maintained in both the original and reverse complement orientation. Regulation can be compromised by reducing the overall structure by fusing the 3' UTR with an unstructured sequence. Mutating base-paired RNA regions can also compromise this structure-mediated regulation, which can be restored by re-introducing base-paired structures of different sequences. The decay pathway requires the RNA-binding protein UPF1 and its associated protein G3BP1. Depletion of either protein increased steady-state levels of mRNAs with highly structured 3' UTRs as well as highly structured circular RNAs. This structure-dependent mechanism therefore enables cells to selectively regulate coding and noncoding RNAs.


Assuntos
Regiões 3' não Traduzidas , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Pareamento de Bases , Linhagem Celular , Regulação da Expressão Gênica , Humanos , RNA Circular/química , RNA Circular/metabolismo
4.
Genes Dev ; 34(15-16): 1075-1088, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32616520

RESUMO

Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.


Assuntos
Retículo Endoplasmático/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Retículo Endoplasmático/enzimologia , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Biossíntese de Proteínas , RNA Helicases/metabolismo
5.
EMBO J ; 42(19): e114378, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37605642

RESUMO

mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.

6.
EMBO J ; 41(10): e108898, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35403729

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway monitors translation termination in order to degrade transcripts with premature stop codons and regulate thousands of human genes. Here, we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL , enables condition-dependent remodeling of NMD specificity. Previous studies indicate that the extension of a conserved regulatory loop in the UPF1LL helicase core confers a decreased propensity to dissociate from RNA upon ATP hydrolysis relative to UPF1SL , the major UPF1 isoform. Using biochemical and transcriptome-wide approaches, we find that UPF1LL can circumvent the protective RNA binding proteins PTBP1 and hnRNP L to preferentially bind and down-regulate transcripts with long 3'UTRs normally shielded from NMD. Unexpectedly, UPF1LL supports induction of NMD on new populations of substrate mRNAs in response to activation of the integrated stress response and impaired translation efficiency. Thus, while canonical NMD is abolished by moderate translational repression, UPF1LL activity is enhanced, offering the possibility to rapidly rewire NMD specificity in response to cellular stress.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , Transativadores , Regiões 3' não Traduzidas , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Isoformas de Proteínas/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/genética , Transativadores/metabolismo
7.
EMBO J ; 41(10): e109191, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35451084

RESUMO

The paralogous human proteins UPF3A and UPF3B are involved in recognizing mRNAs targeted by nonsense-mediated mRNA decay (NMD). UPF3B has been demonstrated to support NMD, presumably by bridging an exon junction complex (EJC) to the NMD factor UPF2. The role of UPF3A has been described either as a weak NMD activator or an NMD inhibitor. Here, we present a comprehensive functional analysis of UPF3A and UPF3B in human cells using combinatory experimental approaches. Overexpression or knockout of UPF3A as well as knockout of UPF3B did not substantially change global NMD activity. In contrast, the co-depletion of UPF3A and UPF3B resulted in a marked NMD inhibition and a transcriptome-wide upregulation of NMD substrates, demonstrating a functional redundancy between both NMD factors. In rescue experiments, UPF2 or EJC binding-deficient UPF3B largely retained NMD activity. However, combinations of different mutants, including deletion of the middle domain, showed additive or synergistic effects and therefore failed to maintain NMD. Collectively, UPF3A and UPF3B emerge as fault-tolerant, functionally redundant NMD activators in human cells.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Ligação a RNA , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
8.
Hum Genomics ; 18(1): 22, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424652

RESUMO

BACKGROUND: To report newly found TSPAN12 mutations with a unique form of familial exudative vitreoretinopathy (FEVR) and find out the possible mechanism of a repeated novel intronic variant in TSPAN12 led to FEVR. RESULTS: Nine TSPAN12 mutations with a unique form of FEVR were detected by panel-based NGS. MINI-Gene assay showed two splicing modes of mRNA that process two different bands A and B, and mutant-type shows replacement with the splicing mode of Exon11 hopping. Construction of wild-type and mutant TSPAN12 vector showed the appearance of premature termination codons (PTC). In vitro expression detection showed significant down-regulated expression level of TSPAN12 mRNAs and proteins in cells transfected with mutant vectors compared with in wild-type group. On the contrary, translation inhibitor CHX and small interfering RNA of UPF1 (si-UPF1) significantly increased mRNA or protein expression of TSPAN12 in cells transfected with the mutant vectors. CONCLUSIONS: Nine mutations in TSPAN12 gene are reported in 9 FEVR patients with a unique series of ocular abnormalities. The three novel TSPAN12 mutations trigger NMD would cause the decrease of TSPAN12 proteins that participate in biosynthesis and assembly of microfibers, which might lead to FEVR, and suggest that intronic sequence analysis might be a vital tool for genetic counseling and prenatal diagnoses.


Assuntos
Códon sem Sentido , Tetraspaninas , Humanos , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/diagnóstico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Linhagem , Mutação , Análise Mutacional de DNA , Transativadores/genética , RNA Helicases/genética
9.
Mol Cell ; 67(2): 239-251.e6, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28669802

RESUMO

UPF1 is an RNA helicase that orchestrates nonsense-mediated decay and other RNA surveillance pathways. While UPF1 is best known for its basal cytoprotective role in degrading aberrant RNAs, UPF1 also degrades specific, normally occurring mRNAs to regulate diverse cellular processes. Here we describe a role for UPF1 in regulated protein decay, wherein UPF1 acts as an E3 ubiquitin ligase to repress human skeletal muscle differentiation. Suppressing UPF1 accelerates myogenesis, while ectopically increasing UPF1 levels slows myogenesis. UPF1 promotes the decay of MYOD protein, a transcription factor that is a master regulator of myogenesis, while leaving MYOD mRNA stability unaffected. UPF1 acts as an E3 ligase via its RING domain to promote MYOD protein ubiquitination and degradation. Our data characterize a regulatory role for UPF1 in myogenesis, and they demonstrate that UPF1 provides a mechanistic link between the RNA and protein decay machineries in human cells.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético/enzimologia , Mioblastos Esqueléticos/enzimologia , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Baixo , Feminino , Células HEK293 , Humanos , Masculino , Músculo Esquelético/citologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Domínios Proteicos , Proteólise , RNA Helicases , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Transativadores/química , Transativadores/genética , Transcrição Gênica , Transfecção , Ubiquitinação
10.
Cell Mol Life Sci ; 81(1): 150, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512499

RESUMO

Deposition of the exon junction complex (EJC) upstream of exon-exon junctions helps maintain transcriptome integrity by preventing spurious re-splicing events in already spliced mRNAs. Here we investigate the importance of EJC for the correct splicing of the 2.2-megabase-long human DMD pre-mRNA, which encodes dystrophin, an essential protein involved in cytoskeletal organization and cell signaling. Using targeted RNA-seq, we show that knock-down of the eIF4A3 and Y14 core components of EJC in a human muscle cell line causes an accumulation of mis-splicing events clustered towards the 3' end of the DMD transcript (Dp427m). This deregulation is conserved in the short Dp71 isoform expressed ubiquitously except in adult skeletal muscle and is rescued with wild-type eIF4A3 and Y14 proteins but not with an EJC assembly-defective mutant eIF4A3. MLN51 protein and EJC-associated ASAP/PSAP complexes independently modulate the inclusion of the regulated exons 71 and 78. Our data confirm the protective role of EJC in maintaining splicing fidelity, which in the DMD gene is necessary to preserve the function of the critical C-terminal protein-protein interaction domain of dystrophin present in all tissue-specific isoforms. Given the role of the EJC in maintaining the integrity of dystrophin, we asked whether the EJC could also be involved in the regulation of a mechanism as complex as skeletal muscle differentiation. We found that eIF4A3 knockdown impairs myogenic differentiation by blocking myotube formation. Collectively, our data provide new insights into the functional roles of EJC in human skeletal muscle.


Assuntos
Distrofina , Splicing de RNA , Humanos , Núcleo Celular/metabolismo , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Splicing de RNA/genética , RNA Mensageiro/metabolismo
11.
Proteomics ; : e2300361, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350726

RESUMO

Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.

12.
J Biol Chem ; 299(5): 104628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963491

RESUMO

The GDT1 family is broadly spread and highly conserved among living organisms. GDT1 members have functions in key processes like glycosylation in humans and yeasts and photosynthesis in plants. These functions are mediated by their ability to transport ions. While transport of Ca2+ or Mn2+ is well established for several GDT1 members, their transport mechanism is poorly understood. Here, we demonstrate that H+ ions are transported in exchange for Ca2+ and Mn2+ cations by the Golgi-localized yeast Gdt1 protein. We performed direct transport measurement across a biological membrane by expressing Gdt1p in Lactococcus lactis bacterial cells and by recording either the extracellular pH or the intracellular pH during the application of Ca2+, Mn2+ or H+ gradients. Besides, in vivo cytosolic and Golgi pH measurements were performed in Saccharomyces cerevisiae with genetically encoded pH probes targeted to those subcellular compartments. These data point out that the flow of H+ ions carried by Gdt1p could be reversed according to the physiological conditions. Together, our experiments unravel the influence of the relative concentration gradients for Gdt1p-mediated H+ transport and pave the way to decipher the regulatory mechanisms driving the activity of GDT1 orthologs in various biological contexts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Magnésio/metabolismo , Cátions/metabolismo , Prótons , Lactococcus lactis/genética , Membranas Intracelulares/metabolismo , Espaço Intracelular/química , Espaço Intracelular/metabolismo
13.
Cancer Sci ; 115(8): 2646-2658, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889220

RESUMO

RNA-binding proteins can regulate nucleotide metabolism and gene expression. UPF3B regulator of nonsense mediated mRNA decay (UPF3B) exhibits dysfunction in cancers. However, its role in the progression of hepatocellular carcinoma (HCC) is still insufficiently understood. Here, we found that UPF3B was markedly upregulated in HCC samples and associated with adverse prognosis in patients. UPF3B dramatically promoted HCC growth both in vivo and in vitro. Mechanistically, UPF3B was found to bind to PPP2R2C, a regulatory subunit of PP2A, boosting its mRNA degradation and activating the PI3K/AKT/mTOR pathway. E2F transcription factor 6 (E2F6) directly binds to the UPF3B promoter to facilitate its transcription. Together, the E2F6/UPF3B/PPP2R2C axis promotes HCC growth through the PI3K/AKT/mTOR pathway. Hence, it could be a promising therapeutic target for treating HCC.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a RNA , Serina-Treonina Quinases TOR , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Transdução de Sinais , Masculino , Proliferação de Células/genética , Prognóstico , Feminino , Camundongos Nus , Regulação para Cima
14.
Trends Genet ; 37(2): 143-159, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008628

RESUMO

Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.


Assuntos
Códon sem Sentido/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , Animais , Humanos , Transcriptoma/genética
15.
Eur J Immunol ; 53(8): e2250261, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37141498

RESUMO

Effective vaccines that function through humoral immunity seek to produce high-affinity antibodies. Our previous research identified the single-nucleotide polymorphism rs3922G in the 3'UTR of CXCR5 as being associated with nonresponsiveness to the hepatitis B vaccine. The differential expression of CXCR5 between the dark zone (DZ) and light zone (LZ) is critical for organizing the functional structure of the germinal center (GC). In this study, we report that the RNA-binding protein IGF2BP3 can bind to CXCR5 mRNA containing the rs3922 variant to promote its degradation via the nonsense-mediated mRNA decay pathway. Deficiency of IGF2BP3 leads to increased CXCR5 expression, which results in the disappearance of CXCR5 differential expression between DZ and LZ, disorganized GCs, aberrant somatic hypermutations, and reduced production of high-affinity antibodies. Furthermore, the affinity of IGF2BP3 for the rs3922G-containing sequence is lower than that for the rs3922A counterpart, which may explain the nonresponsiveness to the hepatitis B vaccination. Together, our findings suggest that IGF2BP3 plays a crucial role in the production of high-affinity antibodies in the GC by binding to the rs3922-containing sequence to regulate CXCR5 expression.


Assuntos
Formação de Anticorpos , Linfócitos B , Alelos , Polimorfismo de Nucleotídeo Único , Centro Germinativo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
16.
Biochem Biophys Res Commun ; 691: 149306, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38056247

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Our previous study on IMTs reveals that disrupt NMD pathway causes to lower the threshold for triggering the immune cell infiltration, thereby resulting in inappropriate immune activation. However, myofibroblast differentiation and proliferation is not yet known. METHODS: RT-PCR, RT-qPCR, DNA sequence, western bolt, 5'race analysis and site-specific mutagenesis were used in this study. RESULTS: Here, an alternative spliced (ALS) UPF2 mRNA skipping exon 2 and 3 and corresponding to the truncated UPF2 protein were found in 2 pancreatic IMTs. We showed that the uORF present in the 5'UTR of UPF2 mRNA is responsible for the translation inhibition, whiles ALS UPF2 is more facilitated to be translated into the truncated UPF2 protein. Several mRNA targets of the NMD were upregulated in IMT samples, indicating that the truncated UPF2 function is strongly perturbed, resulted in disrupted NMD pathway in IMTs. These upregulated NMD targets included cdkn1a expression and the generation of high levels of p21 (waf1/cip1), which may contribute to triggering IMTs. CONCLUSION: The disrupt UPFs/NMD pathway may link to molecular alteration associated with differentiation and proliferation for IMTs.


Assuntos
Neoplasias , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
RNA ; 28(12): 1621-1642, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192133

RESUMO

Upf1, Upf2, and Upf3, the central regulators of nonsense-mediated mRNA decay (NMD), appear to exercise their NMD functions while bound to elongating ribosomes, and evidence for this conclusion is particularly compelling for Upf1. Hence, we used selective profiling of yeast Upf1:ribosome association to define that step in greater detail, understand whether the nature of the mRNA being translated influences Upf1:80S interaction, and elucidate the functions of ribosome-associated Upf1. Our approach has allowed us to clarify the timing and specificity of Upf1 association with translating ribosomes, obtain evidence for a Upf1 mRNA surveillance function that precedes the activation of NMD, identify a unique ribosome state that generates 37-43 nt ribosome footprints whose accumulation is dependent on Upf1's ATPase activity, and demonstrate that a mutated form of Upf1 can interfere with normal translation termination and ribosome release. In addition, our results strongly support the existence of at least two distinct functional Upf1 complexes in the NMD pathway.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , RNA Helicases/genética , RNA Helicases/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Arch Biochem Biophys ; 756: 109989, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621446

RESUMO

It is known that more than 10 % of genetic diseases are caused by a mutation in protein-coding mRNA (premature termination codon; PTC). mRNAs with an early stop codon are degraded by the cellular surveillance process known as nonsense-mediated mRNA decay (NMD), which prevents the synthesis of C-terminally truncated proteins. Up-frameshift-1 (UPF1) has been reported to be involved in the downregulation of various cancers, and low expression of UPF1 was shown to correlate with poor prognosis. It is known that UPF1 is a master regulator of nonsense-mediated mRNA decay (NMD). UPF1 may also function as an E3 ligase and degrade target proteins without using mRNA decay mechanisms. Increasing evidence indicates that UPF1 could serve as a good biomarker for cancer diagnosis and treatment for future therapeutic applications. Long non-coding RNAs (lncRNAs) have the ability to bind different proteins and regulate gene expression; this role in cancer cells has already been identified by different studies. This article provides an overview of the aberrant expression of UPF1, its functional properties, and molecular processes during cancer for clinical applications in cancer. We also discussed the interactions of lncRNA with UPF1 for cell growth during tumorigenesis.


Assuntos
Neoplasias , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , Transativadores , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Helicases/metabolismo , RNA Helicases/genética , Transativadores/metabolismo , Transativadores/genética , Regulação Neoplásica da Expressão Gênica , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Am J Med Genet A ; 194(6): e63534, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318947

RESUMO

UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.


Assuntos
Fenótipo , Humanos , Masculino , Feminino , Criança , Proteínas de Ligação a RNA/genética , Estudos de Associação Genética , Pré-Escolar , Mutação/genética , Adolescente , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Predisposição Genética para Doença
20.
Mol Cell Biochem ; 479(3): 553-566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37120495

RESUMO

Long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) has been shown to be a regulator for many cancers, including non-small cell lung cancer (NSCLC). Therefore, its role and mechanism in the process of NSCLC deserve to be further revealed. The expression levels of GAS5, fat mass and obesity-associated protein (FTO) and bromodomain-containing protein 4 (BRD4) were detected by quantitative real-time PCR. Western blot analysis was used to examine the protein expression of FTO, BRD4, up-frameshift protein 1 (UPF1) and autophagy-related markers. Methylated RNA immunoprecipitation was used to assess the m6A level of GAS5 regulated by FTO. Cell proliferation and apoptosis were determined using MTT assay, EdU assay and flow cytometry. Autophagy ability was assessed by immunofluorescence staining and transmission electron microscope. Xenograft tumor model was constructed to explore the effects of FTO and GAS5 on NSCLC tumor growth in vivo. The interaction between UPF1 and GAS5 or BRD4 was confirmed by pull-down assay, RIP assay, dual-luciferase reporter assay, and chromatin immunoprecipitation. Fluorescent in situ hybridization was used to analyze the co-localization of GAS5 and UPF1. Actinomycin D treatment was employed to evaluate BRD4 mRNA stability. GAS5 was downregulated in NSCLC tissues and was associated with poor prognosis in NSCLC patients. FTO was highly expressed in NSCLC, and it inhibited GAS5 expression by reducing GAS5 m6A methylation level. GAS5 suppressed by FTO could promote the autophagic death of NSCLC cells in vitro and inhibit NSCLC tumor growth in vivo. In addition, GAS5 was able to interact with UPF1 to reduce the mRNA stability of BRD4. Knockdown of BRD4 reversed the inhibition of GAS5 or UPF1 silencing on the autophagic cell death of NSCLC. The findings of the study showed that lncRNA GAS5 mediated by FTO could contribute to the autophagic cell death of NSCLC by interacting with UPF1 to reduce BRD4 mRNA stability, suggesting that GAS5 might be a vital therapy target for NSCLC progression.


Assuntos
Morte Celular Autofágica , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Adenina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Morte Celular Autofágica/genética , Proteínas que Contêm Bromodomínio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ciclo Celular , Proliferação de Células/genética , Desmetilação , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , RNA Longo não Codificante/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa