Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Annu Rev Physiol ; 84: 381-407, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758268

RESUMO

Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.


Assuntos
Mitocôndrias , Termogênese , Metabolismo Energético/fisiologia , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
2.
Adv Exp Med Biol ; 1460: 167-198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287852

RESUMO

Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKß/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.


Assuntos
Hiperfagia , Obesidade , Humanos , Hiperfagia/fisiopatologia , Hiperfagia/psicologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Transtorno da Compulsão Alimentar/terapia , Transtorno da Compulsão Alimentar/psicologia , Transtorno da Compulsão Alimentar/fisiopatologia , Animais , Comportamento Alimentar/fisiologia
3.
Glia ; 71(4): 957-973, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537556

RESUMO

Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.


Assuntos
Doença de Alzheimer , Mitocôndrias , Proteínas de Desacoplamento Mitocondrial , Animais , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762012

RESUMO

Mitochondrial adenine nucleotide translocase (ANT) exchanges ADP for ATP to maintain energy production in the cell. Its protonophoric function in the presence of long-chain fatty acids (FA) is also recognized. Our previous results imply that proton/FA transport can be best described with the FA cycling model, in which protonated FA transports the proton to the mitochondrial matrix. The mechanism by which ANT1 transports FA anions back to the intermembrane space remains unclear. Using a combined approach involving measurements of the current through the planar lipid bilayers reconstituted with ANT1, site-directed mutagenesis and molecular dynamics simulations, we show that the FA anion is first attracted by positively charged arginines or lysines on the matrix side of ANT1 before moving along the positively charged protein-lipid interface and binding to R79, where it is protonated. We show that R79 is also critical for the competitive binding of ANT1 substrates (ADP and ATP) and inhibitors (carboxyatractyloside and bongkrekic acid). The binding sites are well conserved in mitochondrial SLC25 members, suggesting a general mechanism for transporting FA anions across the inner mitochondrial membrane.


Assuntos
Bicamadas Lipídicas , Prótons , Ácidos Graxos/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Ânions/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Pflugers Arch ; 474(10): 1043-1051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780250

RESUMO

Mitochondrial temperature is produced by various metabolic processes inside the mitochondria, particularly oxidative phosphorylation. It was recently reported that mitochondria could normally operate at high temperatures that can reach 50℃. The aim of this review is to identify mitochondrial temperature differences between normal cells and cancer cells. Herein, we discussed the different types of mitochondrial thermosensors and their advantages and disadvantages. We reviewed the studies assessing the mitochondrial temperature in cancer cells and normal cells. We shed the light on the factors involved in maintaining the mitochondrial temperature of normal cells compared to cancer cells.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Temperatura Alta , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Temperatura
6.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232478

RESUMO

The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.


Assuntos
Proteínas Mitocondriais , NAD , Animais , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , NAD/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162943

RESUMO

Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson's disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system.


Assuntos
Ácido Aspártico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/biossíntese , Transporte Biológico Ativo , Clonagem Molecular , Citosol/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , beta-Alanina/biossíntese
8.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887313

RESUMO

In our recent studies, we have developed a thermodynamic biochemical model able to select the resonant frequency of an extremely low frequency electromagnetic field (ELF-EMF) specifically affecting different types of cancer, and we have demonstrated its effects in vitro. In this work, we investigate the cellular response to the ELF electromagnetic wave in three-dimensional (3D) culture models, which mimic the features of tumors in vivo. Cell membrane was modelled as a resistor-capacitor circuit and the specific thermal resonant frequency was calculated and tested on two-dimensional (2D) and three-dimensional (3D) cell cultures of human pancreatic cancer, glioblastoma and breast cancer. Cell proliferation and the transcription of respiratory chain and adenosine triphosphate synthase subunits, as well as uncoupling proteins, were assessed. For the first time, we demonstrate that an ELF-EMF hampers growth and potentiates both the coupled and uncoupled respiration of all analyzed models. Interestingly, the metabolic shift was evident even in the 3D aggregates, making this approach particularly valuable and promising for future application in vivo, in aggressive cancer tissues characterized by resistance to treatments.


Assuntos
Campos Eletromagnéticos , Glioblastoma , Proliferação de Células , Radiação Eletromagnética , Humanos
9.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163451

RESUMO

Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Desacoplamento Mitocondrial/química , Proteínas de Desacoplamento Mitocondrial/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Potencial da Membrana Mitocondrial , Modelos Moleculares , Conformação Proteica
10.
BMC Ophthalmol ; 21(1): 81, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579234

RESUMO

BACKGROUND: Genetic association of uncoupling proteins (UCPs) variants with the susceptibility of diabetic retinopathy (DR) in diabetes mellitus (DM) patients has been reported but with controversy. Here we aimed to conduct a meta-analysis to confirm the association of different UCPs variants with DR. METHODS: Three databases (Medline Ovid, Embase Ovid and CENTRAL) were applied in the literature search. Five genetic models, including allelic, homozygous, heterozygous, dominant and recessive models, were evaluated. Odds ratios (OR) were estimated under the random or fixed-effects models. Subgroup analyses, publication bias and sensitivity analyses were also conducted. RESULTS: Eleven studies on 2 UCPs variants (UCP1 rs1800592 and UCP2 rs659366) were included. Our meta-analysis showed that UCP1 rs1800592 was not associated with DR in type-2 DM patients, and UCP2 rs659366 also showed no association with DR. In the subgroup analyses on the stage of DR, allele G of UCP1 rs1800592 significantly increased the susceptibility of proliferative diabetic retinopathy (PDR) in type-2 DM patients in the allelic (OR = 1.26, P = 0.03) and homozygous models (OR = 1.60, P = 0.04). Subgroup analysis on ethnicity did not found any significant association of rs1800592 and rs659366 with DR. CONCLUSION: Our meta-analysis confirmed the association of UCP1 rs1800592 variant with PDR in patients with type-2 DM, suggesting its potential as a genetic marker for PDR prediction in population screening.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Alelos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Predisposição Genética para Doença , Humanos , Razão de Chances , Polimorfismo de Nucleotídeo Único , Proteína Desacopladora 1 , Proteína Desacopladora 2/genética
11.
BMC Med Genet ; 21(1): 25, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028915

RESUMO

BACKGROUND: The aim of this study was to explore the association between diabetic retinopathy (DR) and the variants of uncoupling proteins (UCPs) genes in a Chinese population of type 2 diabetes, in total and in patients of different glycemic status separately. METHODS: This case-control study included a total of 3107 participants from two datasets, among which 662 were DR patients (21.31%). Eighteen tag single nucleotide polymorphisms (SNPs) of UCP1, UCP2, and UCP3 were selected as genetic markers. TaqMan probes, Sequenom MassARRAY MALDI-TOF mass spectrometry platform and Affymetrix Genome-Wide Human SNP Array were used for genotyping. Online SHEsis software was used for association analysis. Bonferroni correction was used for multiple comparisons correction. RESULTS: Three SNPs of UCP1: rs7688743 (A allele, OR = 1.192, p = 0.013), rs3811787 (T allele, OR = 0.863, p = 0.023), and rs10011540 (G allele, OR = 1.368, p = 0.004) showed association with DR after the adjustment of glucose, but only rs10011540 was marginally significantly associated with DR when Bonferroni correction was strictly applied (padj = 0.048). In patients with uncontrolled glucose, rs7688743 (A allele, p = 0.012, OR = 1.309), rs10011540 (G allele, p = 0.033, OR = 1.432), and rs3811787 (T allele, p = 0.022, OR = 0.811) were associated with DR, while in participants with well controlled glucose, the rs2734827 of UCP3 was associated with DR (A allele, p = 0.017, OR = 0.532). Rs3811787 of UCP1 showed a protective effect to sight threatening DR (T allele, p = 0.007, OR = 0.490), and the association existed after the adjustment for environmental factors and the correction. In patients with uncontrolled glucose, the rs3811787 of UCP1 (T allele, p = 0.017, OR = 0.467) and the rs591758 of UCP3 (C allele, p = 0.026, OR = 0.103) were associated with STDR. While in those with well controlled glucose, only the rs7688743 of UCP1 showed a protective effect (A allele, p = 0.024, OR = 0.049). None of the associations remain significant when Bonferroni correction was strictly applied (all p < 0.05). CONCLUSIONS: The rs10011540 and rs3811787 of the UCP1 gene was marginally significantly associated with DR in Chinese type 2 diabetes patients. There might be different mechanisms of DR development in patients with different glycemic status.


Assuntos
Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Predisposição Genética para Doença , Proteína Desacopladora 1/genética , Idoso , Alelos , Retinopatia Diabética/fisiopatologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Desacoplamento Mitocondrial/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Desacopladora 2/genética , Proteína Desacopladora 3/genética
12.
FASEB J ; 33(8): 8976-8989, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136218

RESUMO

The purpose of the present study was to investigate whether exercise training-induced adaptations in human skeletal muscle mitochondrial bioenergetics are magnified under thermal conditions resembling sustained intense contractile activity and whether training-induced changes in mitochondrial oxidative phosphorylation (OXPHOS) efficiency influence exercise efficiency. Twenty healthy men performed 6 wk of high-intensity exercise training [i.e., speed endurance training (SET; n = 10)], or maintained their usual lifestyle (n = 10). Before and after the intervention, mitochondrial respiratory function was determined ex vivo in permeabilized muscle fibers under experimentally-induced normothermia (35°C) and hyperthermia (40°C) mimicking in vivo muscle temperature at rest and during intense exercise, respectively. In addition, activity and content of muscle mitochondrial enzymes and proteins were quantified. Exercising muscle efficiency was determined in vivo by measurements of leg hemodynamics and blood parameters during one-legged knee-extensor exercise. SET enhanced maximal OXPHOS capacity and OXPHOS efficiency at 40°C, but not at 35°C, and attenuated hyperthermia-induced decline in OXPHOS efficiency. Furthermore, SET increased expression of markers of mitochondrial content and up-regulated content of MFN2, DRP1, and ANT1. Also, SET improved exercise efficiency and capacity. These findings indicate that muscle mitochondrial bioenergetics adapts to high-intensity exercise training in a temperature-dependent manner and that enhancements in mitochondrial OXPHOS efficiency may contribute to improving exercise performance.-Fiorenza, M., Lemminger, A. K., Marker, M., Eibye, K., Iaia, F. M., Bangsbo, J., Hostrup, M. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.


Assuntos
Exercício Físico/fisiologia , Treinamento Intervalado de Alta Intensidade , Músculo Esquelético/fisiologia , Adaptação Fisiológica , Adolescente , Adulto , Metabolismo Energético , Humanos , Técnicas In Vitro , Estudos Longitudinais , Masculino , Mitocôndrias Musculares/fisiologia , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Fosforilação Oxidativa , Consumo de Oxigênio , Resistência Física/fisiologia , Temperatura , Adulto Jovem
13.
Brain Behav Evol ; 95(5): 256-271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33472193

RESUMO

Phenethylamines (e.g., methamphetamine) are a common source of drug toxicity. Phenethylamine-induced hyperthermia (PIH) can activate a cascade of events that may result in rhabdomyolysis, coagulopathy, and even death. Here, we review recent evidence that suggests a potential link between the gut-brain axis and PIH. Within the preoptic area of the hypothalamus, phenethylamines lead to changes in catecholamine levels, that activate the sympathetic nervous system (SNS) and increase the peripheral levels of norepinephrine (NE), resulting in: (1) the loss of heat dissipation through α1 adrenergic receptor (α1-AR)-mediated vasoconstriction, (2) heat generation through ß-AR activation and subsequent free fatty acid (FFA) activation of uncoupling proteins (UCPs) in brown and white adipose tissue, and (3) alteration of the gut microbiome and its link to the gut-brain axis. Recent studies have shown that phenethylamine derivatives can influence the composition of the gut microbiome and thus its metabolic potential. Phenethylamines increase the relative level of Proteuswhich has been linked to enhanced NE turnover. Bidirectional fecal microbial transplants (FMT) between PIH-tolerant and PIH-naïve rats demonstrated that the transplantation of gut microbiome can confer phenotypic hyperthermic and tolerant responses to phenethylamines. These phenethylamine-mediated changes in the gut microbiome were also associated with epigenetic changes in the mediators of thermogenesis. Given the significant role that the microbiome has been shown to play in the maintenance of body temperature, we outline current studies demonstrating the effects of phenethylamines on the gut microbiome and how these microbiome changes may mechanistically contribute to alterations in body temperature.


Assuntos
Microbioma Gastrointestinal , Animais , Hipertermia , Fenetilaminas , Ratos , Termogênese
14.
J Bioenerg Biomembr ; 51(2): 103-119, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30796582

RESUMO

Mitochondrial uncoupling proteins (UCP) transport protons from the intermembrane space to the mitochondrial matrix uncoupling oxidative phosphorylation. In mammals, these proteins have been implicated in several cellular functions ranging from thermoregulation to antioxidant defense. In contrast, their invertebrate homologs have been much less studied despite the great diversity of species. In this study, two transcripts encoding mitochondrial uncoupling proteins were, for the first time, characterized in crustaceans. The white shrimp Litopenaeus vannamei transcript LvUCP4 is expressed in all tested shrimp tissues/organs, and its cDNA includes a coding region of 954 bp long which encodes a deduced protein 318 residues long and a predicted molecular weight of 35.3 kDa. The coding region of LvUCP5 transcript is 906 bp long, encodes a protein of 302 residues with a calculated molecular weight of 33.17 kDa. Both proteins share homology with insect UCPs, their predicted structures show the conserved motifs of the mitochondrial carrier proteins and were confirmed to be located in the mitochondria through a Western blot analysis. The genic expression of LvUCP4 and LvUCP5 was evaluated in shrimp at oxidative stress conditions and results were compared to some antioxidant enzymes to infer about their antioxidant role. LvUCP4 and LvUCP5 genes expression did not change during hypoxia/re-oxygenation, and no coordinated responses were detected with antioxidant enzymes at the transcriptional level. Results confirmed UCPs as the first uncoupling mechanism reported in this species, but their role in the oxidative stress response remains to be confirmed.


Assuntos
Proteínas de Artrópodes/biossíntese , Regulação da Expressão Gênica/fisiologia , Mitocôndrias/metabolismo , Proteínas de Desacoplamento Mitocondrial/biossíntese , Penaeidae/metabolismo , Animais , Proteínas de Artrópodes/genética , Mitocôndrias/genética , Proteínas de Desacoplamento Mitocondrial/genética , Especificidade de Órgãos/fisiologia , Penaeidae/genética
15.
Arch Biochem Biophys ; 664: 102-109, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30716282

RESUMO

Energy homeostasis in mitochondria is vital for proper muscle cell function. In this review we will focus on cardiac and skeletal muscle energy-dissipating systems, i.e., mitochondrial potassium channels and uncoupling proteins. Despite the molecular differences between these proteins both of them may regulate the generation of reactive oxygen species. Hence, they can both modulate pro-life and -death signaling in response to the needs of the muscle cell. Certain mitochondrial potassium channels (such as the ATP-regulated and large conductance calcium-activated mitochondrial potassium channels) and uncoupling proteins may be regulated in a similar manner suggesting that both are part of the energy-dissipating hub in muscle mitochondria. Understanding the role of these proteins, especially in the context of ischemia-reperfusion injury of cardiac muscle, may be important for pharmacological intervention. This review highlights several aspects of the regulation of mitochondrial potassium channels and uncoupling proteins in muscle mitochondria and their association with diseases.


Assuntos
Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Canais de Potássio/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo
16.
J Therm Biol ; 80: 164-171, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30784482

RESUMO

One way to understand ecological patterns of species is to determine their physiological diversity on a large geographic and/or temporal scales, in a context of hierarchical biodiversity framework. In particular, macrophysiological studies analyze how environmental factors affect the physiology and therefore the distribution of species. Subterranean species are an excellent model for evaluating the large-scale effects of ambient temperature (Ta) conditions on thermal physiology and distribution, due to their extensive use of burrows that provide a relatively thermal stable environment. Species belonging to the genus Ctenomys are all subterranean and endemic of South America. Cold induced maximum metabolic rate (MMR), basal metabolic rate (BMR) and non shivering thermogenesis (NST) were analyzed, as well as the expression of uncoupled proteins (UCP) in brown adipose tissue (BAT). Biogeographical variables appear to have no effect MMR experimentally induced by cold condition within Ctenomys. Also, mechanisms of heat production are species-specific, varying from a combination of ST and NST to a complete use of shivering mechanisms. This pattern is correlated at tissue level, since species that use only ST show a smaller interscapular BAT patch, not detectable presence of UCP1 and low COX activity. Thus, other factors, including body mass, that constrain cold induced MMR could affect thermogenic variability among Ctenomys. In the evolutionary timescale, if low O2 levels of burrows impose a ceiling in cold induced MMR, and ST is enhanced due to species-specific life history traits, such as digging effort, then the observed differences among Ctenomys species might be explained.


Assuntos
Roedores/fisiologia , Termogênese , Animais , Metabolismo Energético , Especificidade da Espécie , Temperatura
17.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1365-1373, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31355500

RESUMO

According to our previous studies, bta-miR-152, PRKAA1 and UCP3 are differentially expressed in mammary gland tissues of high milk fat and low milk fat cows, and the trend in bta-miR-152 expression is opposite from those of PRKAA1 and UCP3. To further identify the function and regulatory mechanism of bta-miR-152 in milk fat metabolism, we investigated the effect of bta-miR-152 on cellular triglyceride content in bovine mammary epithelial cells cultured in vitro, on the basis of bta-miR-152 overexpression and inhibition assays. The target genes of bta-miR-152 were identified through qPCR, Western blotting and dual luciferase reporter gene detection. Compared with that in the control group, the expression of UCP3 was significantly lower in the bta-miR-152 mimic group, the expression of PRKAA1 was decreased, and the intracellular TAG content was significantly increased. After transfection with bta-miR-152 inhibitor, the expression of UCP3 increased significantly, and the expression of PRKAA1 decreased, but the difference was not significant; in addition, the intracellular TAG content decreased significantly. Therefore, we concluded that bta-miR-152 affects the intracellular TAG content by targeting UCP3.


Assuntos
Bovinos , Células Epiteliais/metabolismo , MicroRNAs/metabolismo , Triglicerídeos/metabolismo , Proteína Desacopladora 3/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Western Blotting , Sobrevivência Celular , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , MicroRNAs/genética , Leite/química , Mutação , Triglicerídeos/química , Proteína Desacopladora 3/metabolismo
18.
Biochim Biophys Acta Bioenerg ; 1859(9): 940-950, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859845

RESUMO

Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase -a process known as proton leak- generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Desacopladores/farmacologia , Animais , Humanos , Mitocôndrias/efeitos dos fármacos
19.
Biochim Biophys Acta Biomembr ; 1860(3): 664-672, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29212043

RESUMO

Mitochondrial membrane uncoupling protein 3 (UCP3) is not only expressed in skeletal muscle and heart, but also in brown adipose tissue (BAT) alongside UCP1, which facilitates a proton leak to support non-shivering thermogenesis. In contrast to UCP1, the transport function and molecular mechanism of UCP3 regulation are poorly investigated, although it is generally agreed upon that UCP3, analogous to UCP1, transports protons, is activated by free fatty acids (FFAs) and is inhibited by purine nucleotides (PNs). Because the presence of two similar uncoupling proteins in BAT is surprising, we hypothesized that UCP1 and UCP3 are differently regulated, which may lead to differences in their functions. By combining atomic force microscopy and electrophysiological measurements of recombinant proteins reconstituted in planar bilayer membranes, we compared the level of protein activity with the bond lifetimes between UCPs and PNs. Our data revealed that, in contrast to UCP1, UCP3 can be fully inhibited by all PNs and IC50 increases with a decrease in PN-phosphorylation. Experiments with mutant proteins demonstrated that the conserved arginines in the PN-binding pocket are involved in the inhibition of UCP1 and UCP3 to different extents. Fatty acids compete with all PNs bound to UCP1, but only with ATP bound to UCP3. We identified phosphate as a novel inhibitor of UCP3 and UCP1, which acts independently of PNs. The differences in molecular mechanisms of the inhibition between the highly homologous transporters UCP1 and UCP3 indicate that UCP3 has adapted to fulfill a different role and possibly another transport function in BAT.


Assuntos
Nucleotídeos de Adenina/farmacologia , Fosfatos/farmacologia , Proteína Desacopladora 1/antagonistas & inibidores , Proteína Desacopladora 3/antagonistas & inibidores , Animais , Arginina/química , Ligação Competitiva , Ácidos Graxos/farmacologia , Bicamadas Lipídicas , Lipossomos , Camundongos , Microscopia de Força Atômica , Mutagênese Sítio-Dirigida , Prótons , Proteínas Recombinantes/efeitos dos fármacos , Proteína Desacopladora 1/genética , Proteína Desacopladora 3/genética
20.
Pharmacol Res ; 137: 11-24, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30223086

RESUMO

Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.


Assuntos
Cardiotônicos/uso terapêutico , Diabetes Mellitus , Coração/fisiologia , Proteínas de Desacoplamento Mitocondrial/fisiologia , Animais , Cardiotônicos/farmacologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa