Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Genes Dev ; 36(17-18): 1016-1030, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302555

RESUMO

Deubiquitylating enzymes (DUBs) remove ubiquitin chains from proteins and regulate protein stability and function. USP7 is one of the most extensively studied DUBs, since USP7 has several well-known substrates important for cancer progression, such as MDM2, N-MYC, and PTEN. Thus, USP7 is a promising drug target. However, systematic identification of USP7 substrates has not yet been performed. In this study, we carried out proteome profiling with label-free quantification in control and single/double-KO cells of USP7and its closest homolog, USP47 Our proteome profiling for the first time revealed the proteome changes caused by USP7 and/or USP47 depletion. Combining protein profiling, transcriptome analysis, and tandem affinity purification of USP7-associated proteins, we compiled a list of 20 high-confidence USP7 substrates that includes known and novel USP7 substrates. We experimentally validated MGA and PHIP as new substrates of USP7. We further showed that MGA deletion reduced cell proliferation, similar to what was observed in cells with USP7 deletion. In conclusion, our proteome-wide analysis uncovered potential USP7 substrates, providing a resource for further functional studies.


Assuntos
Proteômica , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteoma , Ubiquitina/metabolismo , Ubiquitinação
2.
Genes Dev ; 34(17-18): 1210-1226, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820040

RESUMO

Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by initial chemosensitivity followed by emergence of chemoresistant disease. To study roles for MYCN amplification in SCLC progression and chemoresistance, we developed a genetically engineered mouse model of MYCN-overexpressing SCLC. In treatment-naïve mice, MYCN overexpression promoted cell cycle progression, suppressed infiltration of cytotoxic T cells, and accelerated SCLC. MYCN overexpression also suppressed response to cisplatin-etoposide chemotherapy, with similar findings made upon MYCL overexpression. We extended these data to genetically perturb chemosensitive patient-derived xenograft (PDX) models of SCLC. In chemosensitive PDX models, overexpression of either MYCN or MYCL also conferred a switch to chemoresistance. To identify therapeutic strategies for MYCN-overexpressing SCLC, we performed a genome-scale CRISPR-Cas9 sgRNA screen. We identified the deubiquitinase USP7 as a MYCN-associated synthetic vulnerability. Pharmacological inhibition of USP7 resensitized chemoresistant MYCN-overexpressing PDX models to chemotherapy in vivo. Our findings show that MYCN overexpression drives SCLC chemoresistance and provide a therapeutic strategy to restore chemosensitivity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética
3.
Mol Cell ; 75(3): 469-482.e6, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31278054

RESUMO

A significant fraction (∼10%) of cancer cells maintain their telomere length via a telomerase-independent mechanism known as alternative lengthening of telomeres (ALT). There are no known molecular, ALT-specific, therapeutic targets. We have identified TSPYL5 (testis-specific Y-encoded-like protein 5) as a PML body component, co-localizing with ALT telomeres and critical for ALT+ cell viability. TSPYL5 was described as an inhibitor of the USP7 deubiquitinase. We report that TSPYL5 prevents the poly-ubiquitination of POT1-a shelterin component-and protects POT1 from proteasomal degradation exclusively in ALT+ cells. USP7 depletion rescued POT1 poly-ubiquitination and loss, suggesting that the deubiquitinase activates POT1 E3 ubiquitin ligase(s). Similarly, PML depletion suppressed POT1 poly-ubiquitination, suggesting an interplay between USP7 and PML to trigger POT1 degradation in TSPYL5-depleted ALT+ cells. We demonstrate that ALT telomeres need to be protected from POT1 degradation in ALT-associated PML bodies and identify TSPYL5 as an ALT+ cancer-specific therapeutic target.


Assuntos
Neoplasias/genética , Proteínas Nucleares/genética , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Peptidase 7 Específica de Ubiquitina/genética , Linhagem Celular , Sobrevivência Celular/genética , Humanos , Neoplasias/patologia , Proteína da Leucemia Promielocítica/genética , Ligação Proteica/genética , Proteólise , Complexo Shelterina , Telômero/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
4.
Proc Natl Acad Sci U S A ; 121(36): e2409346121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190345

RESUMO

Meiosis is a form of cell division that is essential to sexually reproducing organisms and is therefore highly regulated. Each event of meiosis must occur at the correct developmental stage to ensure that chromosomes are segregated properly during both meiotic divisions. One unique meiosis-specific structure that is tightly regulated in terms of timing of assembly and disassembly is the synaptonemal complex (SC). While the mechanism(s) for assembly and disassembly of the SC are poorly understood in Drosophila melanogaster, posttranslational modifications, including ubiquitination and phosphorylation, are known to play a role. Here, we identify a role for the deubiquitinase Usp7 in the maintenance of the SC in early prophase and show that its function in SC maintenance is independent of the meiotic recombination process. Using two usp7 shRNA constructs that result in different knockdown levels, we have shown that the presence of SC through early/mid-pachytene is critical for normal levels and placement of crossovers.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Complexo Sinaptonêmico , Animais , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Complexo Sinaptonêmico/metabolismo , Complexo Sinaptonêmico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Meiose , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Masculino , Troca Genética
5.
Proc Natl Acad Sci U S A ; 121(34): e2315759121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39145935

RESUMO

Ubiquitination status of proliferating cell nuclear antigen (PCNA) is crucial for regulating DNA lesion bypass. After the resolution of fork stalling, PCNA is subsequently deubiquitinated, but the underlying mechanism remains undefined. We found that the N-terminal domain of ATAD5 (ATAD5-N), the largest subunit of the PCNA-unloading complex, functions as a scaffold for Ub-PCNA deubiquitination. ATAD5 recognizes DNA-loaded Ub-PCNA through distinct DNA-binding and PCNA-binding motifs. Furthermore, ATAD5 forms a heterotrimeric complex with UAF1-USP1 deubiquitinase, facilitating the deubiquitination of DNA-loaded Ub-PCNA. ATAD5 also enhances the Ub-PCNA deubiquitination by USP7 and USP11 through specific interactions. ATAD5 promotes the distinct deubiquitination process of UAF1-USP1, USP7, and USP11 for poly-Ub-PCNA. Additionally, ATAD5 mutants deficient in UAF1-binding had increased sensitivity to DNA-damaging agents. Our results ultimately reveal that ATAD5 and USPs cooperate to efficiently deubiquitinate Ub-PCNA prior to its release from the DNA in order to safely deactivate the DNA repair process.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Antígeno Nuclear de Célula em Proliferação , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina , Ubiquitinação , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ubiquitina/metabolismo , Dano ao DNA , Ligação Proteica , Proteases Específicas de Ubiquitina
6.
Proc Natl Acad Sci U S A ; 120(49): e2302903120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015852

RESUMO

Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.


Assuntos
Hipersensibilidade , Células Th2 , Humanos , Animais , Camundongos , Granzimas/genética , Granzimas/metabolismo , Interleucina-5/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
J Biol Chem ; 300(9): 107672, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128723

RESUMO

The ubiquitin-proteasome system (UPS), which involves E3 ligases and deubiquitinates (DUBs), is critical for protein homeostasis. The epigenetic reader ZMYND8 (zinc finger MYND-type containing 8) has emerged as an oncoprotein, and its protein levels are elevated in various types of cancer, including breast cancer. However, the mechanism by which ZMYND8 protein levels are increased in cancer remains elusive. Although ZMYND8 has been reported to be regulated by the E3 ligase FBXW7, it is still unknown whether ZMYND8 could be modulated by DUBs. Here, we identified USP7 (ubiquitin carboxyl-terminal hydrolase 7) as a bona fide DUB for ZMYND8. Mechanically, USP7 directly binds to the PBP (PHD-BRD-PWWP) domain of ZMYND8 via its TRAF (tumor necrosis factor receptor-associated factor) domain and UBL (ubiquitin-like) domain and removes F-box and WD repeat domain containing 7 (FBXW7)-catalyzed poly-ubiquitin chains on lysine residue 1034 (K1034) within ZMYND8, thereby stabilizing ZMYND8 and stimulating the transcription of ZMYND8 target genes ZEB1 (zinc finger E-box binding homeobox 1) and VEGFA (Vascular Endothelial Growth Factor A). Consequently, USP7 enhances the capacity of breast cancer cells for migration and invasion through antagonizing FBXW7-mediated ZMYND8 degradation. Importantly, the protein levels of USP7 positively correlates with those of ZMYND8 in breast cancer tissues. These findings delineate an important layer of migration and invasion regulation by the USP7-ZMYND8 axis in breast cancer cells.


Assuntos
Neoplasias da Mama , Movimento Celular , Invasividade Neoplásica , Peptidase 7 Específica de Ubiquitina , Ubiquitinação , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Feminino , Linhagem Celular Tumoral , Epigênese Genética , Células HEK293 , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteínas Supressoras de Tumor
8.
EMBO J ; 40(11): e99692, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33856059

RESUMO

Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Células Cultivadas , Dano ao DNA , Células HCT116 , Humanos , Camundongos , Células NIH 3T3 , Inibidores de Proteases/toxicidade , Proteína Fosfatase 2/metabolismo , Transporte Proteico , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
9.
Funct Integr Genomics ; 24(1): 28, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340226

RESUMO

This study aims to explore the molecular regulation mechanism of ubiquitination-specific protease 7 (USP7) in facilitating the stemness properties of hepatocellular carcinoma (HCC). Gain-of-function and loss-of-function assays were conducted in SK-Hep1 and HepG2 cells transfected with USP7 overexpression/knockdown plasmids and USP7 inhibitor P22077. The proliferation, migration, invasion, and self-renewal capacity of hepatocellular carcinoma cells were detected by CCK-8, colony formation, Transwell, scratch, and tumor sphere formation, respectively. MS was performed to identify the potential substrate of USP7 following P22077 treatment. Co-IP assay was used to verify the interaction between USP7 and basic transcription factor 3 (BTF3) in HCC cells. The overexpression of USP7 could promote the proliferation, migration, invasion, and colony formation capacity of SK-Hep1 and HepG2 cells. Additionally, ectopic UPS7 enhanced the epithelial-mesenchymal transition (EMT) and stem-like characteristics of the HCC cells. In contrast, USP7 depletion by knockdown of USP7 or administrating inhibitor P22077 significantly inhibited these malignant phenotypes of SK-Hep1 and HepG2 cells. Following MS analysis, BTF3 was identified as a potential substrate for USP7. USP7 could interact with BTF3 and upregulate its protein level, while USP7 depletion significantly upregulated the ubiquitination levels. Overexpression of BTF3 partially rescue the inhibitory effects of USP7 depletion on the malignant phenotypes and stemness properties of SK-Hep1 and HepG2 cells. USP7 can promote the stemness and malignant phenotype of HCC by stabilizing BTF3.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Peptidase 7 Específica de Ubiquitina , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Tiofenos , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação , Fatores de Transcrição/metabolismo
10.
Biochem Biophys Res Commun ; 709: 149818, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555840

RESUMO

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Assuntos
Proteínas Oncogênicas , Peptidase 7 Específica de Ubiquitina , Humanos , Domínio Catalítico , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/genética
11.
Biochem Biophys Res Commun ; 722: 150149, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788355

RESUMO

OBJECTIVE: The objective of this study was to examine the potential of USP7 as a target for senolytic therapy and to investigate the molecular mechanism by which its inhibitor selectively induced apoptosis in senescent HDF and enhanced DFU wound healing. METHODS: Clinical samples of DFU were collected to detect the expression of USP7 and aging-related proteins using immunohistochemistry and Western blot. In addition, ß-galactosidase staining, qPCR, flow cytometry, ROS and MMP kits, and Western blot were used to analyze the biological functions of P5091 on senescence, cycle, and apoptosis. RNAseq was employed to further analyze the molecular mechanism of P5091. Finally, the DFU rat model was established to evaluate the effect of P5091 on wound healing. RESULTS: The expression of USP7 and p21 were increased in DFU clinical samples. After treatment with d-glucose (30 mM, 7 days), ß-galactosidase staining was deepened, proliferation rate decreased. USP7 inhibitors (P5091) could reduce the release of SASP factors, activate the production of ROS, and reduce MMP. In addition, it induced apoptosis and selectively clears senescent cells through the p53 signaling pathway. Finally, P5091 can improve diabetic wound healing in rats. CONCLUSION: This study clarified the molecular mechanism of USP7 inhibitor (P5091) selectively inducing apoptosis of high glucose senescent HDF cells. This provides a new senolytics target and experimental basis for promoting DFU wound healing.


Assuntos
Senescência Celular , Transdução de Sinais , Proteína Supressora de Tumor p53 , Peptidase 7 Específica de Ubiquitina , Cicatrização , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Animais , Cicatrização/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Humanos , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Pé Diabético/patologia , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Tiofenos
12.
Genet Med ; 26(3): 101050, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38126281

RESUMO

PURPOSE: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Surdez , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Transtorno do Espectro Autista/genética , Peptidase 7 Específica de Ubiquitina/genética , Epigenômica , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Biomarcadores
13.
Clin Genet ; 105(5): 499-509, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38221796

RESUMO

Hao-Fountain syndrome (HAFOUS, OMIM: #616863) is a neurodevelopmental disorder caused by pathogenic variants in the gene USP7 coding for USP7, a protein involved in several crucial cellular homeostatic mechanisms and the recently described MUST complex. The phenotype of HAFOUS is insufficiently understood, yet there is a great need to better understand the spectrum of disease, genotype-phenotype correlations, and disease trajectories. We now present a larger cohort of 32 additional individuals and provide further clinical information about six previously reported individuals. A questionnaire-based study was performed to characterize the phenotype of Hao-Fountain syndrome more clearly, to highlight new traits, and to better distinguish the disease from related neurodevelopmental disorders. In addition to confirming previously described features, we report hyperphagia and increased body weight in a subset of individuals. HAFOUS patients present an increased rate of birth complications, congenital anomalies, and abnormal pain thresholds. Speech impairment emerges as a potential hallmark of Hao-Fountain syndrome. Cognitive testing reports reveal borderline intellectual functioning on average, although some individuals score in the range of intellectual disability. Finally, we created a syndrome-specific severity score. This score neither indicates a sex- nor age-specific difference of clinical severity, yet highlights a more severe outcome when amino acid changes colocalize to the catalytic domain of the USP7 protein.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Surdez , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
14.
Toxicol Appl Pharmacol ; 491: 117075, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173720

RESUMO

Artesunate (ART) is a derivative of artemisinin and has anti-inflammatory, anti-tumor, and anti-angiogenic properties. Although ART has been implicated in osteoarthritis (OA), the mechanism needs to be further dissected. Here, we explored the effects of ART on the development of OA and the underlying mechanism using destabilization of the medial meniscus (DMM) surgical instability model. Mice with OA were developed using DMM and treated with ART. The pathological morphology of knee joint tissues was examined, and the degeneration of joint cartilage was assessed. Mouse knee chondrocytes were isolated and induced with IL-1ß, followed by ART treatment. ART alleviates OA in mice by elevating ubiquitin carboxyl-terminal hydrolase 7 (USP7) expression, and USP7 inhibitor (P22077) treatment mitigated the protective effects of ART on chondrocytes. We also showed that USP7 mediated the deubiquitination of forkhead box protein O1 (FoxO1), while FoxO1 alleviated chondrocyte injury. In addition, FoxO1 promoted metastasis-associated protein MTA1 (MTA1) transcription, and downregulation of MTA1 exacerbated chondrocyte injury. Our study identifies that USP7/FoxO1/MTA1 is a key signaling cascade in the treatment of ART on OA.


Assuntos
Artesunato , Condrócitos , Proteína Forkhead Box O1 , Camundongos Endogâmicos C57BL , Osteoartrite , Peptidase 7 Específica de Ubiquitina , Animais , Artesunato/farmacologia , Artesunato/uso terapêutico , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Camundongos , Masculino , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Transativadores/metabolismo , Transativadores/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/efeitos dos fármacos
15.
Pharmacol Res ; 205: 107235, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815879

RESUMO

Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1ß was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1ß and suggested that silencing USP7 may be a therapeutic strategy for DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Homeostase , Camundongos Endogâmicos C57BL , Peptidase 7 Específica de Ubiquitina , Animais , Humanos , Masculino , Camundongos , Ratos , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/genética , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética
16.
Exp Cell Res ; 427(2): 113605, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080417

RESUMO

As a member of Ubiquitin-specific protease subfamily, ubiquitin specific protease 7 (USP7) has been reported to participate in a variety of cellular processes, including cell cycle, apoptosis, DNA damage response, and epigenetic modification. However, its function in preimplantation embryos is still obscure. To investigate the functions of USP7 during preimplantation embryo development, we used siRNA to degrade endogenous USP7 messenger RNA. We found that USP7 knockdown significantly decreased the development rate of mouse early embryos. Moreover, depletion of USP7 induced the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, USP7 knockdown caused an abnormal H3K27me3 modification in 2-cell embryos. Overall, our results indicate that USP7 maintains genome stability perhaps via regulating H3K27me3 and DNA damage, consequently controlling the embryo quality.


Assuntos
Histonas , Ubiquitina Tiolesterase , Animais , Camundongos , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Histonas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Dano ao DNA/genética , Proteases Específicas de Ubiquitina/genética
17.
Acta Pharmacol Sin ; 45(8): 1686-1700, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589688

RESUMO

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Hepáticas , Peptidase 7 Específica de Ubiquitina , Regulação para Cima , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fibrinogênio , Tiofenos
18.
Mol Divers ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298085

RESUMO

The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.

19.
Mol Cell ; 64(4): 659-672, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863226

RESUMO

Gene regulatory networks are pivotal for many biological processes. In mouse embryonic stem cells (mESCs), the transcriptional network can be divided into three functionally distinct modules: Polycomb, Core, and Myc. The Polycomb module represses developmental genes, while the Myc module is associated with proliferative functions, and its mis-regulation is linked to cancer development. Here, we show that, in mESCs, the Polycomb repressive complex 2 (PRC2)-associated protein EPOP (Elongin BC and Polycomb Repressive Complex 2-associated protein; a.k.a. C17orf96, esPRC2p48, and E130012A19Rik) co-localizes at chromatin with members of the Myc and Polycomb module. EPOP interacts with the transcription elongation factor Elongin BC and the H2B deubiquitinase USP7 to modulate transcriptional processes in mESCs similar to MYC. EPOP is commonly upregulated in human cancer, and its loss impairs the proliferation of several human cancer cell lines. Our findings establish EPOP as a transcriptional modulator, which impacts both Polycomb and active gene transcription in mammalian cells.


Assuntos
Cromatina/química , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição/genética , Proteases Específicas de Ubiquitina/genética , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Elonguina , Embrião de Mamíferos , Redes Reguladoras de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Peptidase 7 Específica de Ubiquitina , Proteases Específicas de Ubiquitina/metabolismo
20.
Cell Mol Life Sci ; 80(10): 278, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682346

RESUMO

Human papillomavirus (HPV) encoded E7 oncoprotein plays an important role in supporting the viral productive cycle and inducing cancer phenotypes. The ability of E7 to exercise these functions, partly, depends upon its steady-state level. HPV manipulates the host de-ubiquitination pathway to maintain the stability of its viral proteins. In this study, we uncovered that HPV interacts with the host ubiquitin specific protease 7 (USP7), a universal de-ubiquitinating enzyme, leading to the stabilization of E7 oncoprotein. We observed that HPV16E7 complexes with USP7 via the E7-CR3 domain, and this E7-USP7 complex exists predominantly in the nucleus. Our results showed that USP7 stabilizes and prolongs the half-life of HPV16E7 by antagonizing ubiquitination and proteasomal degradation. Consistently, when we inhibited USP7 activity using HBX 19818, HPV16E7 protein level was reduced and its turnover was increased. We also provide evidence that HBX 19818-induced USP7 inhibition can halt HPV-mediated carcinogenesis, including cell proliferation, invasion, migration and transformation. These findings indicate that USP7 plays an essential role in stabilizing E7. The specific and potent inhibitory effects of HBX 19818 on HPV-induced carcinogenesis provide a molecular insight, suggesting the potential of targeting USP7 as a new therapeutic approach for the treatment of HPV-associated cancers.


Assuntos
Infecções por Papillomavirus , Humanos , Peptidase 7 Específica de Ubiquitina , Carcinogênese , Núcleo Celular , Proliferação de Células , Papillomavirus Humano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa