Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Physiol Rev ; 103(1): 515-606, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981302

RESUMO

The protonation state of soluble and membrane-associated macromolecules dictates their charge, conformation, and functional activity. In addition, protons (H+ or their equivalents) partake in numerous metabolic reactions and serve as a source of electrochemical energy to drive the transmembrane transport of both organic and inorganic substrates. Stringent regulation of the intracellular pH is therefore paramount to homeostasis. Although the regulation of the cytosolic pH has been studied extensively, our understanding of the determinants of the H+ concentration ([H+]) of intracellular organelles has developed more slowly, limited by their small size and inaccessibility. Recently, however, targeting of molecular probes to the organellar lumen together with advances in genomic, proteomic, and electrophysiological techniques have led to the identification and characterization of unique pumps, channels, and transporters responsible for the establishment and maintenance of intraorganellar pH. These developments and their implications for cellular function in health and disease are the subject of this review.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Humanos , Concentração de Íons de Hidrogênio , Sondas Moleculares , Organelas/metabolismo , Proteômica , Prótons
2.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396846

RESUMO

Vacuolar ATPases (V-ATPases), proton pumps composed of 16 subunits, are necessary for a variety of cellular functions. Subunit "a" has four isoforms, a1-a4, each with a distinct cellular location. We identified a phosphoinositide (PIP) interaction motif, KXnK(R)IK(R), conserved in all four isoforms, and hypothesize that a/PIP interactions regulate V-ATPase recruitment/retention to different organelles. Among the four isoforms, a2 is enriched on Golgi with a2 mutations in the PIP motif resulting in cutis laxa. We hypothesize that the hydrophilic N-terminal (NT) domain of a2 contains a lipid-binding domain, and mutations in this domain prevent interaction with Golgi-enriched PIPs, resulting in cutis laxa. We recreated the cutis laxa-causing mutation K237_V238del, and a double mutation in the PIP-binding motif, K237A/V238A. Circular dichroism confirmed that there were no protein structure alterations. Pull-down assays with PIP-enriched liposomes revealed that wildtype a2NT preferentially binds phosphatidylinositol 4-phosphate (PI(4)P), while mutants decreased binding to PI(4)P. In HEK293 cells, wildtype a2NT was localized to Golgi and co-purified with microsomal membranes. Mutants reduced Golgi localization and membrane association. Rapamycin depletion of PI(4)P diminished a2NT-Golgi localization. We conclude that a2NT is sufficient for Golgi retention, suggesting the lipid-binding motif is involved in V-ATPase targeting and/or retention. Mutational analyses suggest a molecular mechanism underlying how a2 mutations result in cutis laxa.


Assuntos
Cútis Laxa , ATPases Vacuolares Próton-Translocadoras , Humanos , Cútis Laxa/genética , Cútis Laxa/metabolismo , Células HEK293 , Isoformas de Proteínas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Mutação
3.
Microb Cell Fact ; 22(1): 157, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592258

RESUMO

BACKGROUND: New bioinsecticides with novel modes of action are urgently needed to minimise the environmental and safety hazards associated with the use of synthetic chemical pesticides and to combat growing levels of pesticide resistance. The pea seed albumin PA1b knottin peptide is the only known proteinaceous inhibitor of insect vacuolar adenosine triphosphatase (V-ATPase) rotary proton pumps. Oral toxicity towards insect pests and an absence of activity towards mammals makes Pa1b an attractive candidate for development as a bioinsecticide. The purpose of this study was to investigate if Pichia pastoris could be used to express a functional PA1b peptide and if it's insecticidal activity could be enhanced via engineering to produce a fusion protein comprising the pea albumin protein fused to the mannose-specific snowdrop lectin (Galanthus nivalis agglutinin; GNA). RESULTS: We report the production of a recombinant full-length pea albumin protein (designated PAF) and a fusion protein (PAF/GNA) comprised of PAF fused to the N-terminus of GNA in the yeast Pichia pastoris. PAF was orally toxic to pea (Acyrthosiphon pisum) and peach potato (Myzus persicae) aphids with respective, Day 5 LC50 values of 54 µM and 105 µM derived from dose-response assays. PAF/GNA was significantly more orally toxic as compared to PAF, with LC50 values tenfold (5 µM) and 3.3-fold (32 µM) lower for pea and peach potato aphids, respectively. By contrast, no phenotypic effects were observed for worker bumble bees (Bombus terristrus) fed PAF, GNA or PAF/GNA in acute toxicity assays. Confocal microscopy of pea aphid guts after pulse-chase feeding fluorescently labelled proteins provides evidence that enhanced efficacy of the fusion protein is attributable to localisation and retention of PAF/GNA to the gut epithelium. In contact assays the fusion protein was also found to be significantly more toxic towards A. pisum as compared to PAF, GNA or a combination of the two proteins. CONCLUSIONS: Our results suggest that GNA mediated binding to V-type ATPase pumps acts to potentiate the oral and contact aphicidal activity of PAF. This work highlights potential for the future commercial development of plant protein-based bioinsecticides that offer enhanced target specificity as compared to chemical pesticides, and compatibility with integrated pest management strategies.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Inseticidas/farmacologia , Pisum sativum , Albuminas , Engenharia de Proteínas , Mamíferos
4.
Fish Shellfish Immunol ; 139: 108864, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277051

RESUMO

Sea urchins are a popular model species for studying invertebrate diseases. The immune regulatory mechanisms of the sea urchin Mesocentrotus nudus during pathogenic infection are currently unknown. This study aimed to reveal the potential molecular mechanisms of M. nudus during resistance to Vibrio coralliilyticus infection by integrative transcriptomic and proteomic analyses. Here, we identified a total of 135,868 unigenes and 4,351 proteins in the four infection periods of 0 h, 20 h, 60 h and 100 h in M. nudus. In the I20, I60 and I100 infection comparison groups, 10,861, 15,201 and 8,809 differentially expressed genes (DEGs) and 2,188, 2,386 and 2,516 differentially expressed proteins (DEPs) were identified, respectively. We performed an integrated comparative analysis of the transcriptome and proteome throughout the infection phase and found very a low correlation between transcriptome and proteome changes. KEGG pathway analysis revealed that most upregulated DEGs and DEPs were involved in immune strategies. Notably, "lysosome" and "phagosome" activated throughout the infection process, could be considered the two most important enrichment pathways at the mRNA and protein levels. The significant increase in phagocytosis of infected M. nudus coelomocytes further demonstrated that the lysosome-phagosome pathway played an important immunological role in M. nudus resistance to pathogenic infection. Key gene expression profiles and protein‒protein interaction analysis revealed that cathepsin family and V-ATPase family genes might be key bridges in the lysosome-phagosome pathway. In addition, the expression patterns of key immune genes were verified using qRT‒PCR, and the different expression trends of candidate genes reflected, to some extent, the regulatory mechanism of immune homeostasis mediated by the lysosome-phagosome pathway in M. nudus against pathogenic infection. This work will provide new insights into the immune regulatory mechanisms of sea urchins under pathogenic stress and help identify key potential genes/proteins for sea urchin immune responses.


Assuntos
Proteoma , Vibrioses , Animais , Proteoma/genética , Proteômica , Perfilação da Expressão Gênica , Ouriços-do-Mar/genética , Transcriptoma , Vibrioses/veterinária , Lisossomos , Fagossomos
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902293

RESUMO

Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Células HEK293 , ATPases Vacuolares Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Sítios de Ligação , Mamíferos/metabolismo
6.
Plant J ; 106(6): 1541-1556, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33780094

RESUMO

The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.


Assuntos
Arabidopsis/metabolismo , Simulação por Computador , Homeostase/fisiologia , Modelos Biológicos , Vacúolos/metabolismo , Antiporters/genética , Antiporters/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Cálcio , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Endossomos/genética , Endossomos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Macrolídeos/farmacologia , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rede trans-Golgi/fisiologia
7.
Transfus Apher Sci ; 60(2): 103034, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33341364

RESUMO

BACKGROUND AND OBJECTIVES: The storage lesion of the red blood cell affects the life span of RBC and the quality of blood component. The elucidation of this mechanism is helpful to reduce the storage damage of RBC and improve the efficacy and safety of blood transfusion. The aim of this study was to discover the potential molecular mechanism of erythrocyte storage lesion with Under-collected whole blood (UC-WB) model. METHODS: The label-free MS/MS quantitative method was used to identify the differential proteins of erythrocyte membrane proteins and the difference of Rab11B, V-ATPase and plasma GDI2 protein expression were further verified by western blot at the end of blood storage. RESULTS: A total of 12 Rab proteins and 3 interacting effector proteins were identified among the membrane protein of normal WB and UC-WB, including 5 differential Rab proteins and 2 interacting effector proteins. Compared with normal WB, the expression of membrane Rab11B protein and ATP6V1B1/2 subunit of V-ATPases protein as well as the plasma GDI2 protein of UC-WB increased at the end of storage period. CONCLUSION: Rab protein might be related to RBC storage lesions, Rab11B participates in the RBC storage lesion through Rab11B/V-ATPases pathways.


Assuntos
Preservação de Sangue/métodos , Sangue/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Voluntários Saudáveis , Humanos
8.
J Proteome Res ; 18(3): 1255-1263, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592607

RESUMO

Cisplatin (CDDP) is a widely used agent in the treatment of neuroblastoma. Unfortunately, the development of acquired chemoresistance limits its clinical use. To gain a detailed understanding of the mechanisms underlying the development of such chemoresistance, we comparatively analyzed established cisplatin-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its sensitive counterpart (UKF-NB-4). First, using viability screenings, we confirmed the decreased sensitivity of tested cells to cisplatin and identified a cross-resistance to carboplatin and oxaliplatin. Then, the proteomic signatures were analyzed using nano liquid chromatography with tandem mass spectrometry. Among the proteins responsible for UKF-NB-4CDDP chemoresistance, ion channels transport family proteins, ATP-binding cassette superfamily proteins (ATP = adenosine triphosphate), solute carrier-mediated trans-membrane transporters, proteasome complex subunits, and V-ATPases were identified. Moreover, we detected markedly higher proteasome activity in UKF-NB-4CDDP cells and a remarkable lysosomal enrichment that can be inhibited by bafilomycin A to sensitize UKF-NB-4CDDP to CDDP. Our results indicate that lysosomal sequestration and proteasome activity may be one of the key mechanisms responsible for intrinsic chemoresistance of neuroblastoma to CDDP.


Assuntos
Cisplatino/farmacologia , Lisossomos/genética , Neuroblastoma/tratamento farmacológico , Proteômica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Complexo de Endopeptidases do Proteassoma/genética , Transcriptoma/genética
9.
J Cell Biochem ; 120(7): 11690-11701, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30746744

RESUMO

Mutations of the Ras oncogene are frequently detected in human cancers. Among Ras-mediated tumorigenesis, Kras-driven cancers are the most dominant mutation types. Here, we investigated molecular markers related to the Kras mutation, which is involved in energy metabolism in Kras mutant-driven cancer. We first generated a knock-in KrasG12D cell line as a model. The genotype and phenotype of the Kras G12D -driven cells were first confirmed. Dramatically elevated metabolite characterization was observed in Kras G12D -driven cells compared with wild-type cells. Analysis of mitochondrial metabolite-related genes showed that two of the 84 genes in Kras G12D -driven cells differed from control cells by at least twofold. The messenger RNA and protein levels of ATP6V0D2 were significantly upregulated in Kras G12D -driven cells. Knockdown of ATP6V0D2 expression inhibited motility and invasion but did not affect the proliferation of Kras G12D -driven cells. We further investigated ATP6V0D2 expression in tumor tissue microarrays. ATP6V0D2 overexpression was observed in most carcinoma tissues, such as melanoma, pancreas, and kidney. Thus, we suggest that ATP6V0D2, as one of the V-ATPase (vacuolar-type H + -ATPase) subunit isoforms, may be a potential therapeutic target for Kras mutation cancer.

10.
Cell Mol Neurobiol ; 38(8): 1491-1504, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30302629

RESUMO

Gastric H+/K+-ATPase or vacuolar-ATPases (V-ATPases) are critical for the cancer cells survival and growth in the ischemic microenvironment by extruding protons from the cell. The drugs which inhibit V-ATPases are known as proton pump inhibitors (PPIs). In the present study, we aimed to evaluate the anticancer efficacy of pantoprazole (PPZ) and its consequences on NF-κB signaling in glioma cells. We have used MTT and clonogenic assay to show PPZ effect on glioma cell growth. Propidium iodide and rhodamine 123 staining were performed to demonstrate cell cycle arrest and mitochondrial depolarization. TUNEL staining was used to evidence apoptosis after PPZ treatment. Immunoblotting and immunofluorescence microscopy were performed to depict protein levels and localization, respectively. Luciferase assay was performed to confirm NF-κB suppression by PPZ. Our results revealed PPZ treatment inhibits cell viability or growth and induced cell death in a dose- and time-dependent manner. PPZ exposure arrested G0/G1 cyclic phase and increased TUNEL positivity, caspase-3 and PARP cleavage with altered pro and anti-apoptotic proteins. PPZ also induced ROS levels and depolarized mitochondria (Δψm) with increased cytosolic cytochrome c level. Further, PPZ suppressed TNF-α stimulated NF-κB signaling by repressing p65 nuclear translocation. NF-κB luciferase reporter assays revealed significant inhibition of NF-κB gene upon PPZ treatment. PPZ exposure also reduced the expression of NF-κB-associated genes, such as cyclin-D1, iNOS, and COX-2, which indicate NF-κB inhibition. Altogether, the present study disclosed that PPZ exerts mitochondrial apoptosis and attenuates NF-κB signaling suggesting PPZ can be an effective and safe anticancer drug for glioma.


Assuntos
Apoptose/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Pantoprazol/farmacologia , Transdução de Sinais , Animais , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
11.
J Cell Biochem ; 117(6): 1464-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27043248

RESUMO

Vacuolar proton pump H(+)-adenosine triphosphatases (V-ATPases) play an important role in osteoclast function. Further understanding of the cellular and molecular mechanisms of V-ATPase inhibition is vital for the development of anti-resorptive drugs specifically targeting osteoclast V-ATPases. In this study, we observed that bafilomycin A1, a naturally-occurring inhibitor of V-ATPases, increased the protein level of SQSTM1/p62, a known negative regulator of osteoclast formation. Consistently, we found that bafilomycin A1 diminishes the intracellular accumulation of the acidotropic probe lysotracker in osteoclast-like cells; indicative of reduced acidification. Further, bafilomycin A1 inhibits osteoclast formation with attenuation of cell fusion and multi-nucleation of osteoclast-like cells during osteoclast differentiation. Taken together, these data indicate that bafilomycin A1 attenuates osteoclast differentiation in part via increased levels of SQSTM1/p62 protein, providing further mechanistic insight into the effect of V-ATPase inhibition in osteoclasts.


Assuntos
Aminas/metabolismo , Inibidores Enzimáticos/farmacologia , Macrolídeos/farmacologia , Osteoclastos/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Osteoclastos/citologia , Células RAW 264.7
12.
J Extracell Vesicles ; 13(4): e12426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532609

RESUMO

Besides participating in diverse pathological and physiological processes, extracellular vesicles (EVs) are also excellent drug-delivery vehicles. However, clinical drugs modulating EV levels are still lacking. Here, we show that proton pump inhibitors (PPIs) reduce EVs by enhancing macropinocytosis-mediated EV uptake. PPIs accelerate intestinal cell endocytosis of autocrine immunosuppressive EVs through macropinocytosis, thereby aggravating inflammatory bowel disease. PPI-induced macropinocytosis facilitates the clearance of immunosuppressive EVs from tumour cells, improving antitumor immunity. PPI-induced macropinocytosis also increases doxorubicin and antisense oligonucleotides of microRNA-155 delivery efficiency by EVs, leading to enhanced therapeutic effects of drug-loaded EVs on tumours and acute liver failure. Mechanistically, PPIs reduce cytosolic pH, promote ATP6V1A (v-ATPase subunit) disassembly from the vacuolar membrane and enhance the assembly of plasma membrane v-ATPases, thereby inducing macropinocytosis. Altogether, our results reveal a mechanism for macropinocytic regulation and PPIs as potential modulators of EV levels, thus regulating their functions.


Assuntos
Vesículas Extracelulares , Inibidores da Bomba de Prótons , Endocitose , Pinocitose , Adenosina Trifosfatases
13.
Cells ; 11(7)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406702

RESUMO

Several neurodegenerative disorders involve impaired neurotransmission, and glutamatergic neurotransmission sets a prototypical example. Glutamate is a predominant excitatory neurotransmitter where the astrocytes play a pivotal role in maintaining the extracellular levels through release and uptake mechanisms. Astrocytes modulate calcium-mediated excitability and release several neurotransmitters and neuromodulators, including glutamate, and significantly modulate neurotransmission. Accumulating evidence supports the concept of excitotoxicity caused by astrocytic glutamatergic release in pathological conditions. Thus, the current review highlights different vesicular and non-vesicular mechanisms of astrocytic glutamate release and their implication in neurodegenerative diseases. As in presynaptic neurons, the vesicular release of astrocytic glutamate is also primarily meditated by calcium-mediated exocytosis. V-ATPase is crucial in the acidification and maintenance of the gradient that facilitates the vesicular storage of glutamate. Along with these, several other components, such as cystine/glutamate antiporter, hemichannels, BEST-1, TREK-1, purinergic receptors and so forth, also contribute to glutamate release under physiological and pathological conditions. Events of hampered glutamate uptake could promote inflamed astrocytes to trigger repetitive release of glutamate. This could be favorable towards the development and worsening of neurodegenerative diseases. Therefore, across neurodegenerative diseases, we review the relations between defective glutamatergic signaling and astrocytic vesicular and non-vesicular events in glutamate homeostasis. The optimum regulation of astrocytic glutamatergic transmission could pave the way for the management of these diseases and add to their therapeutic value.


Assuntos
Astrócitos , Doenças Neurodegenerativas , Astrócitos/fisiologia , Cálcio , Ácido Glutâmico , Humanos , Neurotransmissores , Transmissão Sináptica/fisiologia
14.
Mech Ageing Dev ; 204: 111673, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398002

RESUMO

Gut homeostasis is a dynamically balanced state to maintain intestinal health. Vacuolar ATPases (V-ATPases) are multi-subunit proton pumps that were driven by ATP hydrolysis. Several subunits of V-ATPases may be involved in the maintenance of intestinal pH and gut homeostasis in Drosophila. However, the specific role of each subunit in this process remains to be elucidated. Here, we knocked down the Drosophila gene VhaAC39-1 encoding the V0d1 subunit of V-ATPases to assess its function in gut homeostasis. Knockdown of VhaAC39-1 resulted in the loss of midgut acidity, the increase of the number of gut microbiota and the impairment of intestinal epithelial integrity in flies. The knockdown of VhaAC39-1 led to the hyperproliferation of intestinal stem cells, increasing the number of enteroendocrine cells, and activated IMD signaling pathway and JAK-STAT signaling pathway, inducing intestinal immune response of Drosophila. In addition, knockdown of VhaAC39-1 caused the disturbance of many physiological indicators such as food intake, triglyceride level and fecundity of flies, which ultimately led to the shortening of the life span of Drosophila. These results shed light on the gut homeostasis mechanisms which would help to identify interventions to promote healthy aging.


Assuntos
Proteínas de Drosophila , Drosophila , Adenosina Trifosfatases/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostase/fisiologia , Células-Tronco/metabolismo
15.
EBioMedicine ; 45: 408-421, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31257146

RESUMO

BACKGROUND: Dominant deafness-onychodystrophy (DDOD) syndrome is a rare disorder mainly characterized by severe deafness, onychodystrophy and brachydactyly. We previously identified c.1516C > T (p.Arg506X) in ATP6V1B2 as cause of DDOD syndrome, accounting for all cases of this genetic disorder. Clinical follow-up of DDOD syndrome patients with cochlear implantation revealed the language rehabilitation was unsatisfactory although the implanted cochlea worked well, which indicates there might be learning and memory problems in DDOD syndrome patients. However, the underlying mechanisms were unknown. METHODS: atp6v1b2 knockdown zebrafish and Atp6v1b2 c.1516C > T knockin mice were constructed to explore the phenotypes and related mechanism. In mutant mice, auditory brainstem response test and cochlear morphology analysis were performed to evaluate the auditory function. Behavioral tests were used to investigate various behavioral and cognitive domains. Resting-state functional magnetic resonance imaging was used to evaluate functional connectivity in the mouse brain. Immunofluorescence, Western blot, and co-immunoprecipitation were performed to examine the expression and interactions between the subunits of V-ATPases. FINDINGS: atp6v1b2 knockdown zebrafish showed developmental defects in multiple organs and systems. However, Atp6v1b2 c.1516C > T knockin mice displayed obvious cognitive defects but normal hearing and cochlear morphology. Impaired hippocampal CA1 region and weaker interaction between the V1E and B2 subunits in Atp6v1b2Arg506X//Arg506X mice were observed. INTERPRETATION: Our study extends the phenotypic range of DDOD syndrome. The impaired hippocampal CA1 region may be the pathological basis of the behavioral defects in mutant mice. The molecular mechanism underlying V-ATPases dysfunction involves a weak interaction between subunits, although the assembly of V-ATPases can still take place.


Assuntos
Surdez/genética , Deficiência Intelectual/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adulto , Animais , Cóclea , Surdez/fisiopatologia , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Lactente , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Peixe-Zebra/genética
16.
Onco Targets Ther ; 11: 6705-6722, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349304

RESUMO

BACKGROUND: Our study aimed to explore the effects of PPIs on reversing multidrug resistance (MDR) to chemotherapy in gastric cancer by inhibiting the expression of V-ATPases and the PI3K/Akt/mTOR/HIF-1α signal pathway. METHODS: The gastric cancer cell lines SGC7901 and the multidrug resistance cell lines SGC7901/MDR were pretreated by the pantoprazole or the esomeprazole, respectively. Real-time PCR was used to determine mRNA levels, and western blotting and immunofluorescent staining analyses were employed to determine the protein expressions and intracellular distributions of the V-ATPases, PI3K, Akt, mTOR, HIF-1α, P-gp and MRP1 before and after PPIs pretreatment. SGC7901/MDR cells were planted on the athymic nude mice. Then the effects of PPZ pretreatment and/or ADR were compared by determining the tumor size, tumor weight and nude mice weight. RESULTS: PPIs pretreatment could inhibit mRNA levels of V-ATPases, MDR1 and MRP1, PI3K, Akt, mTOR and HIF-1α. PPIs inhibited V-ATPases and down-regulated the expressions of P-gp and MRP1. And further to block the expression of mTOR by Rapamycin could obviously inhibit the expressions of HIF-1α, P-gp and MRP1 in a dose-dependent manner. Therefore, PPIs inhibited the expressions of V-ATPases and then reversed MDR of the chemotherapy in gastric cancer by inhibiting P-gp and MRP1, and it could be speculated that the mechanism might be closely related to down-regulating the PI3K/Akt/mTOR/HIF-1α signaling pathway. Meanwhile, PPIs also could inhibit the expressions of TSC1/TSC2 complex and Rheb which might be involved into regulating the signaling pathway intermediately. The weight growth rate of the mice bearing tumor in the treatment group was lower than that of the nude mice in the normal group, while the weight growth rate of the mice in control group was significantly lower than that of the normal group and the treatment group, presenting a downward trend. CONCLUSION: Therefore, PPIs inhibited the expressions of V-ATPases and then reversed MDR of the chemotherapy in gastric cancer by inhibiting P-gp and MRP1, and it could be speculated that the mechanism might be closely related to down-regulating the PI3K/Akt/mTOR/HIF-1α signaling pathway, and also to inhibiting the expressions of TSC1/TSC2 complex and Rheb which might be involved into regulating the signaling pathway intermediately.

17.
Cell Rep ; 24(11): 3072-3086, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208329

RESUMO

The niche critically controls stem cell behavior, but its regulatory input at the whole-genome level is poorly understood. We elucidated transcriptional programs of the somatic and germline lineages in the Drosophila testis and genome-wide binding profiles of Zfh-1 and Abd-A expressed in somatic support cells and crucial for fate acquisition of both cell lineages. We identified key roles of nucleoporins and V-ATPase proton pumps and demonstrate their importance in controlling germline development from the support side. To make our dataset publicly available, we generated an interactive analysis tool, which uncovered conserved core genes of adult stem cells across species boundaries. We tested the functional relevance of these genes in the Drosophila testis and intestine and found a high frequency of stem cell defects. In summary, our dataset and interactive platform represent versatile tools for identifying gene networks active in diverse stem cell types.


Assuntos
Proteínas de Drosophila/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Masculino , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
18.
Metabolites ; 8(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295495

RESUMO

Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na⁺/H⁺ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.

19.
Artigo em Chinês | WPRIM | ID: wpr-861698

RESUMO

Background: Studies have showed that proton pump inhibitor (PPI) can inhibit the expression of V-ATPases and influence the glycolysis of gastric cancer cells. V-ATPases have important significance on malignant biological behavior of tumor. Aims: To explore the mechanisms of PPI on gastric cancer via inhibiting glycolysis and glutamine metabolism. Methods: In the cell experiment, gastric cancer cell lines were cultured with PPI and knockdown of related molecules, cell proliferation was determined by CCK-8 assay, cell apoptosis was detected by flow cytometry. mRNA and protein expressions of related molecules were detected by quantitative PCR and Western blotting, respectively. In the animal experiment, nude mice were divided into blank control group, 0.9% NaCl solution group, pantoprazole sodium group, and PKM2 group, body weight, feeding behavior, tumor size and expressions of related pathway molecule in tumor tissue were compared. Results: PPI could inhibit the proliferation and induce apoptosis of gastric cancer cells. PPI could suppress the expression of related molecules of glycolysis and glutamine metabolism. Knocking down PKM2 or PI3K could inhibit proliferation and induce apoptosis of gastric cancer cells. Silencing V-ATPases inhibited the expression of related molecules of glycolysis and glutamine metabolism in gastric cancer cells. PPI therapy delayed tumor growth and reduced cachexia in tumor-bearing mice. Conclusions: PPI may inhibit cell proliferation and induce cell apoptosis by influencing glycolysis and glutamine metabolism of gastric cancer cells via suppressing V-ATPases and PI3K pathway, thus to play an anti-tumor role.

20.
Front Plant Sci ; 3: 188, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22936939

RESUMO

Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa