Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Eur J Immunol ; 54(10): e2350958, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39046890

RESUMO

In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.


Assuntos
Linfócitos B , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Proteínas de Homeodomínio , Recombinação V(D)J , Animais , Proteínas de Homeodomínio/genética , Camundongos , Proteínas de Ligação a DNA/genética , Recombinação V(D)J/genética , Linfócitos B/imunologia , Células Precursoras de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL
2.
Eur J Immunol ; 52(11): 1819-1828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36189878

RESUMO

Anti-viral T-cell responses are usually directed against a limited set of antigens, but often contain many T cells expressing different T-cell receptors (TCRs). Identical TCRs found within virus-specific T-cell populations in different individuals are known as public TCRs, but also TCRs highly-similar to these public TCRs, with only minor variations in amino acids on specific positions in the Complementary Determining Regions (CDRs), are frequently found. However, the degree of freedom at these positions was not clear. In this study, we used the HLA-A*02:01-restricted EBV-LMP2FLY -specific public TCR as model and modified the highly-variable position 5 of the CDR3ß sequence with all 20 amino acids. Our results demonstrate that amino acids at this particular position in the CDR3ß region of this TCR are completely inter-changeable, without loss of TCR function. We show that the inability to find certain variants in individuals is explained by their lower recombination probability rather than by steric hindrance.


Assuntos
Aminoácidos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta
3.
Eur J Immunol ; 51(5): 1028-1038, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682138

RESUMO

The RAG1 and RAG2 proteins initiate the process of V(D)J recombination and therefore play an essential role in adaptive immunity. While null mutations in the RAG genes cause severe combined immune deficiency with lack of T and B cells (T- B- SCID) and susceptibility to life-threatening, early-onset infections, studies in humans and mice have demonstrated that hypomorphic RAG mutations are associated with defects of central and peripheral tolerance resulting in immune dysregulation. In this review, we provide an overview of the extended spectrum of RAG deficiencies and their associated clinical and immunological phenotypes in humans. We discuss recent advances in the mechanisms that control RAG expression and function, the effects of perturbed RAG activity on lymphoid development and immune homeostasis, and propose novel approaches to correct this group of disorders.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Imunodeficiência Combinada Severa/etiologia , Imunodeficiência Combinada Severa/terapia , Recombinação V(D)J/genética , Animais , Diagnóstico Diferencial , Gerenciamento Clínico , Modelos Animais de Doenças , Estudos de Associação Genética , Terapia Genética , Genótipo , Humanos , Mutação , Fenótipo , Imunodeficiência Combinada Severa/diagnóstico
4.
Fish Shellfish Immunol ; 121: 467-477, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35077867

RESUMO

In response to the invasion of exogenous microorganisms, one of the defence strategies of the immune system is to produce antibodies. Cartilaginous fish is among those who evolved the earliest humoral immune system that utilizes immunoglobulin-type antibodies. The cartilaginous fish antibodies fall into three categories: IgW, IgM, and IgNAR. The shark Immunoglobulin Novel Antigen Receptor (IgNAR) constitutes disulfide-bonded dimers of two protein chains, similar to the heavy chain of mammalian IgGs. Shark IgNAR is the primary antibody of a shark's adaptive immune system with a serum concentration of 0.1-1.0 mg/mL. Its structure comprises of one variable (V) domain (VNAR) and five constant (C1 -C5) domains in the secretory form. VNARs are classified into several subclasses based on specific properties such as the quantity and position of additional non-canonical cysteine (Cys) residues in the VNAR. The VDJ recombination in IgNAR comprises various fragments; one variable component, three diverse sections, one joining portion, and a solitary arrangement of constant fragments framed in each IgNAR gene cluster. The re-arrangement happens just inside this gene cluster bringing about a VD1D2D3J segment. Therefore, four re-arrangement procedures create the entire VNAR space. IgNAR antibody can serve as an excellent diagnostic, therapeutic, and research tool because it has a smaller size, high specificity for antigen-binding, and perfect stability. The domain characterization, structural features, types, diversity and therapeutic applications of IgNAR molecules are highlighted in this review. It would be helpful for further research on IgNAR antibodies acting as an essential constituent of the adaptive immune system and a potential therapeutic agent.


Assuntos
Anticorpos , Tubarões , Imunidade Adaptativa , Animais , Anticorpos/imunologia , Receptores de Antígenos , Tubarões/imunologia
5.
J Biol Chem ; 295(36): 12786-12795, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32699111

RESUMO

A new form of somatic gene recombination (SGR) has been identified in the human brain that affects the Alzheimer's disease gene, amyloid precursor protein (APP). SGR occurs when a gene sequence is cut and recombined within a single cell's genomic DNA, generally independent of DNA replication and the cell cycle. The newly identified brain SGR produces genomic complementary DNAs (gencDNAs) lacking introns, which integrate into locations distinct from germline loci. This brief review will present an overview of likely related recombination mechanisms and genomic cDNA-like sequences that implicate evolutionary origins for brain SGR. Similarities and differences exist between brain SGR and VDJ recombination in the immune system, the first identified SGR form that now has a well-defined enzymatic machinery. Both require gene transcription, but brain SGR uses an RNA intermediate and reverse transcriptase (RT) activity, which are characteristics shared with endogenous retrotransposons. The identified gencDNAs have similarities to other cDNA-like sequences existing throughout phylogeny, including intron-less genes and inactive germline processed pseudogenes, with likely overlapping biosynthetic processes. gencDNAs arise somatically in an individual to produce multiple copies; can be functional; appear most frequently within postmitotic cells; have diverse sequences; change with age; and can change with disease state. Normally occurring brain SGR may represent a mechanism for gene optimization and long-term cellular memory, whereas its dysregulation could underlie multiple brain disorders and, potentially, other diseases like cancer. The involvement of RT activity implicates already Food and Drug Administration-approved RT inhibitors as possible near-term interventions for managing SGR-associated diseases and suggest next-generation therapeutics targeting SGR elements.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Encéfalo/metabolismo , Elementos Nucleotídeos Longos e Dispersos , DNA Polimerase Dirigida por RNA , Recombinação Genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
6.
Eur J Immunol ; 49(12): 2146-2158, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31355919

RESUMO

The rabbit has been widely used in immunology and infectiology. Rabbit immunoglobulins have been extensively studied, leading to the discovery of their idiotypes, allotypic diversity, and of the diversification of the primary repertoire by hyperconversion. Much less is known about rabbit T cell receptors (TR), especially TRA. This isotype is particularly important for innate-like T cells, which typically express invariant TRA (iTRA). The presence of such cells in the rabbit remains an enigma. Rabbit NKT cells seem to be very rare, and lagomorphs lack MAIT cells. TRAV1, the variable gene expressed in the iTRA of these cells across most mammals, and MR1, the MH1-like receptor that present riboflavin derivatives to MAIT cells, are missing in rabbit. An alternative iTRA has been identified, that may be expressed by new innate-like T cells. To facilitate TRA repertoire analyses in rabbit, we report here a full description of TRA and TRD loci and a subgroup definition based on IMGT® classification. Rabbit TRA rearrangements follow the same temporal pattern that is observed in mouse and human. Rare transcripts expressing TRDV/TRDD/TRDJ rearrangements spliced to TRAC were detected. TRA and TRD genes have been made available in IMGT and IMGT/HighV-QUEST, allowing easy analysis of TRA/TRD RepSeq.


Assuntos
Loci Gênicos , Imunidade Inata/genética , Células T Matadoras Naturais , Receptores de Antígenos de Linfócitos T/genética , Animais , Humanos , Camundongos , Coelhos , Receptores de Antígenos de Linfócitos T/imunologia
7.
Proc Natl Acad Sci U S A ; 114(9): 2253-2258, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196891

RESUMO

The ability of the adaptive immune system to respond to arbitrary pathogens stems from the broad diversity of immune cell surface receptors. This diversity originates in a stochastic DNA editing process (VDJ recombination) that acts on the surface receptor gene each time a new immune cell is created from a stem cell. By analyzing T-cell receptor (TCR) sequence repertoires taken from the blood and thymus of mice of different ages, we quantify the changes in the VDJ recombination process that occur from embryo to young adult. We find a rapid increase with age in the number of random insertions and a dramatic increase in diversity. Because the blood accumulates thymic output over time, blood repertoires are mixtures of different statistical recombination processes, and we unravel the mixture statistics to obtain a picture of the time evolution of the early immune system. Sequence repertoire analysis also allows us to detect the statistical impact of selection on the output of the VDJ recombination process. The effects we find are nearly identical between thymus and blood, suggesting that our analysis mainly detects selection for proper folding of the TCR receptor protein. We further find that selection is weaker in laboratory mice than in humans and it does not affect the diversity of the repertoire.


Assuntos
Imunidade Adaptativa , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia , Recombinação V(D)J , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Envelhecimento , Animais , Variação Genética/genética , Variação Genética/imunologia , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Recombinação V(D)J/genética , Recombinação V(D)J/imunologia , Éxons VDJ/genética , Éxons VDJ/imunologia
8.
Proc Natl Acad Sci U S A ; 114(32): 8608-8613, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739911

RESUMO

Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B-cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/-Mb1-Cre+/- mice were virtually devoid of mature B cells, and B220+CD43+ B-cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the Ig heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3Δ/- bone marrow. For Hdac3Δ/- B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment use. Although transcriptional effects within these loci were modest, Hdac3Δ/- progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Reintroduction of wild-type Hdac3 restored normal B-cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells.


Assuntos
Linfócitos B/metabolismo , Histona Desacetilases/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/metabolismo , Recombinação V(D)J/fisiologia , Animais , Histona Desacetilases/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Camundongos , Camundongos Transgênicos , Mutação Puntual
9.
J Allergy Clin Immunol ; 143(2): 726-735, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29772310

RESUMO

BACKGROUND: Mutations in recombination-activating gene (RAG) 1 and RAG2 are associated with a broad range of clinical and immunologic phenotypes in human subjects. OBJECTIVE: Using a flow cytometry-based assay, we aimed to measure the recombinase activity of naturally occurring RAG2 mutant proteins and to correlate our results with the severity of the clinical and immunologic phenotype. METHODS: Abelson virus-transformed Rag2-/- pro-B cells engineered to contain an inverted green fluorescent protein (GFP) cassette flanked by recombination signal sequences were transduced with retroviruses encoding either wild-type or 41 naturally occurring RAG2 variants. Bicistronic vectors were used to introduce compound heterozygous RAG2 variants. The percentage of GFP-expressing cells was evaluated by using flow cytometry, and high-throughput sequencing was used to analyze rearrangements at the endogenous immunoglobulin heavy chain (Igh) locus. RESULTS: The RAG2 variants showed a wide range of recombination activity. Mutations associated with severe combined immunodeficiency and Omenn syndrome had significantly lower activity than those detected in patients with less severe clinical presentations. Four variants (P253R, F386L, N474S, and M502V) previously thought to be pathogenic were found to have wild-type levels of activity. Use of bicistronic vectors permitted us to assess more carefully the effect of compound heterozygous mutations, with good correlation between GFP expression and the number and diversity of Igh rearrangements. CONCLUSIONS: Our data support genotype-phenotype correlation in the setting of RAG2 deficiency. The assay described can be used to define the possible disease-causing role of novel RAG2 variants and might help predict the severity of the clinical phenotype.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/genética , Cadeias Pesadas de Imunoglobulinas/genética , Mutação/genética , Proteínas Nucleares/genética , Receptores de Antígenos de Linfócitos B/genética , Imunodeficiência Combinada Severa/genética , Adolescente , Linhagem Celular Transformada , Criança , Pré-Escolar , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Polimorfismo Genético
10.
Eur J Immunol ; 48(5): 874-884, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29369345

RESUMO

Idiopathic pulmonary arterial hypertension (IPAH) is a devastating pulmonary vascular disease in which autoimmune and inflammatory phenomena are implicated. B cells and autoantibodies have been associated with IPAH and identified as potential therapeutic targets. However, the specific populations of B cells involved and their roles in disease pathogenesis are not clearly defined. We aimed to assess the levels of activated B cells (plasmablasts) in IPAH, and to characterize recombinant antibodies derived from these plasmablasts. Blood plasmablasts are elevated in IPAH, remain elevated over time, and produce IgA autoantibodies. Single-cell sequencing of plasmablasts in IPAH revealed repertoires of affinity-matured antibodies with small clonal expansions, consistent with an ongoing autoimmune response. Recombinant antibodies representative of these clonal lineages bound known autoantigen targets and displayed an unexpectedly high degree of polyreactivity. Representative IPAH plasmablast recombinant antibodies stimulated human umbilical vein endothelial cells to produce cytokines and overexpress the adhesion molecule ICAM-1. Together, our results demonstrate an ongoing adaptive autoimmune response involving IgA plasmablasts that produce anti-endothelial cell autoantibodies in IPAH. These antibodies stimulate endothelial cell production of cytokines and adhesion molecules, which may contribute to disease pathogenesis. These findings suggest a role for mucosally-driven autoimmunity and autoimmune injury in the pathogenesis of IPAH.


Assuntos
Autoanticorpos/imunologia , Autoimunidade/imunologia , Células Endoteliais/imunologia , Hipertensão Pulmonar Primária Familiar/imunologia , Plasmócitos/imunologia , Formação de Anticorpos/imunologia , Citocinas/biossíntese , Hipertensão Pulmonar Primária Familiar/sangue , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Plasmócitos/citologia
11.
Immunol Cell Biol ; 96(6): 642-645, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29573470

RESUMO

The utility of T-cell receptor (TCR) transgenic mice in medical research has been considerable, with applications ranging from basic biology all the way to translational and clinical investigations. Crossing of TCR transgenic mice with either recombination-activating gene (RAG)-1 or RAG-2 knockouts is frequently used to generate mice with a monoclonal T-cell repertoire. However, low level productive TCR rearrangement has been reported in RAG-deficient mice expressing transgenic TCRs. Using deep sequencing, we set out to directly examine and quantify the presence of these endogenous TCRs. Our demonstration that functional nontransgenic TCRs are present in nonmanipulated mice has wide reaching ramifications worthy of critical consideration.


Assuntos
Proteínas de Homeodomínio/genética , Camundongos Transgênicos/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação V(D)J/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos
12.
Immunol Cell Biol ; 96(6): 553-561, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29726044

RESUMO

The thymus plays a crucial role in immune tolerance by exposing developing T cells (thymocytes) to a myriad of self-antigens. Strong T-cell receptor (TCR) engagement induces tolerance in self-reactive thymocytes by stimulating apoptosis or selection into specialized T-cell lineages, including intestinal TCRαß+ CD8αα+ intraepithelial lymphocytes (IEL). TCR-intrinsic amino acid motifs that can be used to predict whether a TCR will be strongly self-reactive remain elusive. Here, a novel TCR sequence alignment approach revealed that T-cell lineages in C57BL/6 mice had divergent usage of cysteine within two positions of the amino acid at the apex of the complementarity-determining region 3 (CDR3) of the TCRα or TCRß chain. Compared to pre-selection thymocytes, central CDR3 cysteine usage was increased in IEL and Type A IEL precursors (IELp) and markedly decreased in Foxp3+ regulatory T cells (T-reg) and naïve T cells. These findings reveal a TCR-intrinsic motif that distinguishes Type A IELp and IEL from T-reg and naïve T cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Regiões Determinantes de Complementaridade/química , Linfócitos Intraepiteliais/citologia , Receptores de Antígenos de Linfócitos T alfa-beta/química , Timócitos/citologia , Animais , Linhagem da Célula , Cisteína/química , Camundongos , Camundongos Endogâmicos C57BL
13.
Clin Immunol ; 178: 1-9, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-25596453

RESUMO

We used high throughput sequencing to examine the structure and composition of the T cell receptor ß chain in Common Variable Immune Deficiency (CVID). TCRß CDR3 regions were amplified and sequenced from genomic DNA of 44 adult CVID subjects and 22 healthy adults, using a high-throughput multiplex PCR. CVID TCRs had significantly less junctional diversity, fewer n-nucleotide insertions and deletions, and completely lacked a population of highly modified TCRs, with 13 or more V-gene nucleotide deletions, seen in healthy controls. The CVID CDR3 sequences were significantly more clonal than control DNA, and displayed unique V gene usage. Despite reduced junctional diversity, increased clonality and similar infectious exposures, DNA of CVID subjects shared fewer TCR sequences as compared to controls. These abnormalities are pervasive, found in out-of-frame sequences and thus independent of selection and were not associated with specific clinical complications. These data support an inherent T cell defect in CVID.


Assuntos
Imunodeficiência de Variável Comum/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/metabolismo , Recombinação V(D)J/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Células Clonais , Imunodeficiência de Variável Comum/imunologia , Regiões Determinantes de Complementaridade/genética , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Análise de Sequência de DNA , Linfócitos T/imunologia , Adulto Jovem
14.
BMC Bioinformatics ; 17(1): 433, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782801

RESUMO

BACKGROUND: T cells and B cells are essential in the adaptive immunity via expressing T cell receptors and immunoglogulins respectively for recognizing antigens. To recognize a wide variety of antigens, a highly diverse repertoire of receptors is generated via complex recombination of the receptor genes. Reasonably, frequencies of the recombination events have been shown to predict immune diseases and provide insights into the development of immunity. The field is further boosted by high-throughput sequencing and several computational tools have been released to analyze the recombined sequences. However, all current tools assume regular recombination of the receptor genes, which is not always valid in data prepared using a RACE approach. Compared to the traditional multiplex PCR approach, RACE is free of primer bias, therefore can provide accurate estimation of recombination frequencies. To handle the non-regular recombination events, a new computational program is needed. RESULTS: We propose TRIg to handle non-regular T cell receptor and immunoglobulin sequences. Unlike all current programs, TRIg does alignments to the whole receptor gene instead of only to the coding regions. This brings new computational challenges, e.g., ambiguous alignments due to multiple hits to repetitive regions. To reduce ambiguity, TRIg applies a heuristic strategy and incorporates gene annotation to identify authentic alignments. On our own and public RACE datasets, TRIg correctly identified non-regularly recombined sequences, which could not be achieved by current programs. TRIg also works well for regularly recombined sequences. CONCLUSIONS: TRIg takes into account non-regular recombination of T cell receptor and immunoglobulin genes, therefore is suitable for analyzing RACE data. Such analysis will provide accurate estimation of recombination events, which will benefit various immune studies directly. In addition, TRIg is suitable for studying aberrant recombination in immune diseases. TRIg is freely available at https://github.com/TLlab/trig .


Assuntos
Biologia Computacional/métodos , Imunoglobulinas/genética , Anotação de Sequência Molecular , Receptores de Antígenos de Linfócitos T/genética , Alinhamento de Sequência/métodos , Software , Algoritmos , Animais , Primers do DNA , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Recombinação Genética/genética , Linfócitos T/imunologia
15.
J Allergy Clin Immunol ; 135(6): 1578-88.e5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25842288

RESUMO

BACKGROUND: PRKDC encodes for DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a kinase that forms part of a complex (DNA-dependent protein kinase [DNA-PK]) crucial for DNA double-strand break repair and V(D)J recombination. In mice DNA-PK also interacts with the transcription factor autoimmune regulator (AIRE) to promote central T-cell tolerance. OBJECTIVE: We sought to understand the causes of an inflammatory disease with granuloma and autoimmunity associated with decreasing T- and B-cell counts over time that had been diagnosed in 2 unrelated patients. METHODS: Genetic, molecular, and functional analyses were performed to characterize an inflammatory disease evocative of a combined immunodeficiency. RESULTS: We identified PRKDC mutations in both patients. These patients exhibited a defect in DNA double-strand break repair and V(D)J recombination. Whole-blood mRNA analysis revealed a strong interferon signature. On activation, memory T cells displayed a skewed cytokine response typical of TH2 and TH1 but not TH17. Moreover, mutated DNA-PKcs did not promote AIRE-dependent transcription of peripheral tissue antigens in vitro. The latter defect correlated in vivo with production of anti-calcium-sensing receptor autoantibodies, which are typically found in AIRE-deficient patients. In addition, 9 months after bone marrow transplantation, patient 1 had Hashimoto thyroiditis, suggesting that organ-specific autoimmunity might be linked to nonhematopoietic cells, such as AIRE-expressing thymic epithelial cells. CONCLUSION: Deficiency of DNA-PKcs, a key AIRE partner, can present as an inflammatory disease with organ-specific autoimmunity, suggesting a role for DNA-PKcs in regulating autoimmune responses and maintaining AIRE-dependent tolerance in human subjects.


Assuntos
Proteína Quinase Ativada por DNA/genética , Granuloma/genética , Síndromes de Imunodeficiência/genética , Mutação , Proteínas Nucleares/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Adolescente , Animais , Autoanticorpos/biossíntese , Autoimunidade/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Reparo do DNA por Junção de Extremidades/imunologia , Proteína Quinase Ativada por DNA/deficiência , Proteína Quinase Ativada por DNA/imunologia , Feminino , Regulação da Expressão Gênica , Granuloma/imunologia , Granuloma/metabolismo , Granuloma/patologia , Humanos , Tolerância Imunológica , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Síndromes de Imunodeficiência/patologia , Masculino , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologia , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/patologia , Fatores de Transcrição/imunologia , Recombinação V(D)J/imunologia , Adulto Jovem , Proteína AIRE
16.
Cell Immunol ; 288(1-2): 31-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24607567

RESUMO

Diversity of B and T cell receptors, achieved by gene recombination and somatic hypermutation, allows the immune system for recognition and targeted reaction against various threats. Next-generation sequencing for assessment of a cell's gene composition and variation makes deep analysis of one individual's immune spectrum feasible. An easy to apply but detailed analysis and visualization strategy is necessary to process all sequences generated. We performed sequencing utilizing the 454 system for CLL and control samples, utilized the IMGT database and applied the presented analysis tools. With the applied protocol, malignant clones are found and characterized, mutational status compared to germline identity is elaborated in detail showing that the CLL mutation status is not as monoclonal as generally thought. On the other hand, this strategy is not solely applicable to the 454 sequencing system but can easily be transferred to any other next-generation sequencing platform.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/normas , Leucemia Linfocítica Crônica de Células B/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Sequência de Bases , Estudos de Casos e Controles , Células Clonais , Mutação em Linhagem Germinativa , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Dados de Sequência Molecular , Filogenia , Receptores de Antígenos de Linfócitos B/classificação , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/classificação , Receptores de Antígenos de Linfócitos T/imunologia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
17.
Front Immunol ; 14: 1245175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744336

RESUMO

T-cell receptor (TR) diversity of the variable domains is generated by recombination of both the alpha (TRA) and beta (TRB) chains. The textbook process of TRB chain production starts with TRBD and TRBJ gene rearrangement, followed by the rearrangement of a TRBV gene to the partially rearranged D-J gene. Unsuccessful V-D-J TRB rearrangements lead to apoptosis of the cell. Here, we performed deep sequencing of the poorly explored pool of partial TRBD1-TRBD2 rearrangements in T-cell genomic DNA. We reconstructed full repertoires of human partial TRBD1-TRBD2 rearrangements using novel sequencing and validated them by detecting V-D-J recombination-specific byproducts: excision circles containing the recombination signal (RS) joint 5'D2-RS - 3'D1-RS. Identified rearrangements were in compliance with the classical 12/23 rule, common for humans, rats, and mice and contained typical V-D-J recombination footprints. Interestingly, we detected a bimodal distribution of D-D junctions indicating two active recombination sites producing long and short D-D rearrangements. Long TRB D-D rearrangements with two D-regions are coding joints D1-D2 remaining classically on the chromosome. The short TRB D-D rearrangements with no D-region are signal joints, the coding joint D1-D2 being excised from the chromosome. They both contribute to the TRB V-(D)-J combinatorial diversity. Indeed, short D-D rearrangements may be followed by direct V-J2 recombination. Long D-D rearrangements may recombine further with J2 and V genes forming partial D1-D2-J2 and then complete V-D1-D2-J2 rearrangement. Productive TRB V-D1-D2-J2 chains are present and expressed in thousands of clones of human antigen-experienced memory T cells proving their capacity for antigen recognition and actual participation in the immune response.


Assuntos
Apoptose , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Recombinação V(D)J , Animais , Humanos , Camundongos , Ratos , Aberrações Cromossômicas , Células Clonais , Células T de Memória
18.
Front Immunol ; 14: 1237754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720227

RESUMO

Therapeutic antibodies can elicit unwanted immune responses in a subset of patients, which leads to the production of anti-drug antibodies (ADA). Some of these ADAs have been reported to effect the pharmacokinetics, efficacy and/or safety of the therapeutic antibodies. The sequence diversity of antibodies are generated by VDJ recombination and mutagenesis. While the antibody generation process can create a large candidate pool for identifying high-affinity antibodies, it also could produce sequences that are foreign to the human immune system. However, it is not clear how VDJ recombination and mutagenesis impact the clinical ADA rate of therapeutic antibodies. In this study, we identified a positive correlation between the clinical ADA rate and the number of introduced mutations in the antibody sequences. We also found that the use of rare V alleles in human-origin antibody therapeutics is associated with higher risk of immunogenicity. The results suggest that antibody engineering projects should start with frameworks that contain commonly used V alleles and prioritize antibody candidates with low number of mutations to reduce the risk of immunogenicity.


Assuntos
Anticorpos , Recombinação V(D)J , Humanos , Anticorpos/genética , Anticorpos/uso terapêutico , Alelos , Mutagênese , Mutação
19.
Methods Mol Biol ; 2580: 261-282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374463

RESUMO

Quantitative real-time PCR and next-generation sequencing (NGS) are invaluable techniques to analyze T cell receptor (Tcr) gene rearrangements in mouse lymphocyte populations. Although these approaches are powerful, they also have limitations that must be accounted for in experimental design and data interpretation. Here, we provide relevant background required for understanding these limitations and then outline established quantitative real-time PCR and NGS methods that can be used for analysis of mouse Tcra and Tcrb gene rearrangements in mice.


Assuntos
Rearranjo Gênico , Receptores de Antígenos de Linfócitos T alfa-beta , Camundongos , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Reação em Cadeia da Polimerase
20.
J Mol Biol ; 434(7): 167509, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202629

RESUMO

Intranuclear position of several genes is dynamically altered during development concordant with their activation. To understand this dynamic, but non-random, nuclear organization, it is important to identify the relevant regulatory elements and trans acting factors. Murine TCRb locus gets activated during thymic development. Enhancer Eb is important for VDJ recombination at TCRb locus as it is critically required for establishment of recombination center. Our analysis revealed that TCRb locus gets located out of the chromosome territory specifically in developing thymocytes. Further, CRISPR/Cas9 based deletion mutagenesis established an unambiguous role of enhancer Eb in defining TCRb location relative to chromosome territory. The ability to reposition the target locus relative to chromosome territory highlights a novel aspect pertaining to activity of enhancers which may contribute to their ability to regulate gene expression. Additionally, our observations have implications for understanding the role of enhancers in three-dimensional genome organization and function.


Assuntos
Elementos Facilitadores Genéticos , Loci Gênicos , Receptores de Antígenos de Linfócitos T alfa-beta , Timócitos , Recombinação V(D)J , Animais , Cromatina/metabolismo , Cromossomos/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Timócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa