Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Toxicol ; 38(10): 2298-2309, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334766

RESUMO

Pneumonia is a condition characterized by lung damage resulting from a robust immune response by the host. While the defense and immunity against bacterial lung infections have been extensively studied, little is known about the specific immune factors involved in the progression of bacterial pneumonia. To address this knowledge gap, our study aimed to compare normal lung tissues with pneumonia tissues using various techniques, including HE staining, RNA sequencing, RT-PCR, and Elisa assay. Our analysis revealed a significant increase in the levels of interleukin-6 (IL-6) in pneumonia tissues compared to normal lung tissues. To further investigate the underlying mechanism, we extracted exosomes from both pneumonia and normal lung tissues using ultracentrifugation. The exosomes were then examined using electron microscopy, diameter analysis, and western blot assay. RNA sequencing of the exosomes revealed an upregulation of several microRNAs (miRNAs), with miR-362 exhibiting the most significant change. This finding was confirmed through RT-PCR analysis conducted on lung tissues and alveolar lavage fluid. To gain insights into the specific target genes of miR-362, we employed bioinformatics analysis, which identified VENTX as a potential target gene. This finding was further validated through RT-PCR, western blot, and luciferase assay. Our experimental evidence demonstrated that miR-362 regulates VENTX expression, as evidenced by the use of miR-362 mimics or inhibitors on lung cells. Furthermore, we discovered that exosomes derived from pneumonia tissues upregulate IL-6 production through the miR-362/VENTX axis. Importantly, the blocking of IL-6 generation, which is facilitated by miR-362 inhibitor and VENTX overexpression lentivirus, can be achieved by treating exosomes. Moreover, we conducted in vivo experiments using pneumonia models. Rats were treated with IL-6, miR-362 mimics, or VENTX knock-down lentivirus. The results demonstrated a worse prognosis for rats treated with these factors, indicating their potential as prognostic markers. Taken together, our study suggests that exosomes facilitate IL-6 generation by transferring miR-362, thereby suppressing VENTX transcription. Consequently, the IL-6/miR-362/VENTX axis emerges as a promising therapeutic target for pneumonia.


Assuntos
Exossomos , MicroRNAs , Pneumonia , Ratos , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Pneumonia/genética , Pneumonia/metabolismo , Pulmão/metabolismo
2.
Dev Growth Differ ; 64(7): 347-361, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36053777

RESUMO

Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Células-Tronco/metabolismo , Tensoativos , Traqueia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362118

RESUMO

Sizzled (Szl) is a secreted frizzled protein, having a sequence homology with the extracellular cysteine-rich domain (CRD) of the Wnt receptor, 'Frizzled'. Contrary to the other secreted frizzled like proteins (Sfrps), szl belongs to the bone morphogenetic protein 4 (Bmp4) synexpression group and is tightly coexpressed with Bmp4. What is not known is how the szl transcription achieves its Bmp4 synexpression pattern. To address the molecular details of szl transcription control, we cloned a promoter of size 1566 base pairs for szl (bps) from the Xenopus laevis genomic DNA. Luciferase and eGFP reporter gene results of this szl promoter (-1566 bp) in its activation and repression patterns by Bmp4/Smad1 and a dominant negative Bmp4 receptor (DNBR) were similar to those of the endogenous szl expression. Reporter gene assays and site-directed mutagenesis of the szl promoter mapped an active Bmp4/Smad1 response element (BRE) and a cis-acting element, which competitively share a direct binding site for Ventx1.1 and Ventx2.1 (a Ventx response element, VRE). Smad1 and ventx2.1 alone increased szl promoter activity; in addition, the binding of each protein component was enhanced with their coexpression. Interestingly, Ventx1.1 repressed this reporter gene activity; however, Ventx1.1 and Ventx2.1 together positively regulated the szl promoter activity. From our analysis, Ventx2.1 binding was enhanced by Ventx1.1, but Ventx1.1 inhibitory binding was inhibited by co-injection of Ventx2.1 for the VRE site. The inhibitory Ventx1.1 co-injection decreased Smad1 binding on the szl promoter. In a triple combination of overexpressed Smad1/Ventx1.1/Ventx2.1, the reduced binding of Smad1 from Ventx1.1 was recovered to that of the Smad1/Ventx2 combination. Collectively, this study provides evidence of Bmp4/Smad1 signaling for a primary immediate early response and its two oppositely behaving target transcription factors, Ventx1.1 and Ventx2.1, for a secondary response, as they together upregulate the szl promoter's activity to achieve szl expression in a Bmp4 synexpression manner.


Assuntos
Fatores de Transcrição , Proteínas de Xenopus , Animais , Xenopus laevis/genética , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Sítios de Ligação , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo
4.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269883

RESUMO

The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Animais , Desenvolvimento Embrionário/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição/metabolismo , Xenopus laevis/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
5.
Development ; 145(14)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29866901

RESUMO

Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of ß-catenin by reducing its steady state levels, in a process that does not require ß-catenin phosphorylation by glycogen synthase kinase 3ß. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear ß-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of ß-catenin to the dorsal side.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Receptor Notch1/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor Notch1/genética , Xenopus laevis , Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
6.
J Biochem Mol Toxicol ; 33(3): e22262, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30431698

RESUMO

SALL4, as a stemness marker, plays a key role in the maintenance of pluripotency and self-renewal of cancer stem cells. To elucidate probable linkage between SALL4 stemness marker and bone morphogenetic protein (BMP) cell signaling pathway, we aimed to analyze the expression levels of the related genes in esophageal squamous cell carcinoma (ESCC) patients. Tumoral and corresponding margin normal tissues from 50 treatment-naive ESCC patients were subjected for expression analysis using relative comparative real-time reverse transcription polymerase chain reaction. There were significant correlations between SALL4 mRNA and BMP signaling target genes expression including SIZN1, VENTX, and DIDO1 (P < 0.01). Tight associations of gene expression were observed in primary stages of tumor progression (stages I/II), and the invaded tumors to the adventitia (T3/T4). Furthermore, significant correlations between the expression of BMP signaling target genes were observed (P < 0.01). SALL4 may play role in tumorigenesis and tumor cell invasiveness of ESCC through correlation with BMP signaling genes.


Assuntos
Proteínas de Ligação a DNA/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
Mol Cells ; 47(4): 100058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522664

RESUMO

A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.


Assuntos
Gástrula , Proteínas de Homeodomínio , Regiões Promotoras Genéticas , Proteínas de Xenopus , Xenopus laevis , Animais , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína Goosecoid/genética , Proteína Goosecoid/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Xenopus laevis/genética , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
8.
Cells ; 12(6)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980215

RESUMO

The reciprocal inhibition between two signaling centers, the Spemann organizer (dorsal mesoderm) and ventral region (mesoderm and ectoderm), collectively regulate the overall development of vertebrate embryos. Each center expresses key homeobox transcription factors (TFs) that directly control target gene transcription. Goosecoid (Gsc) is an organizer (dorsal mesoderm)-specific TF known to induce dorsal fate and inhibit ventral/ectodermal specification. Ventx1.1 (downstream of Bmp signaling) induces the epidermal lineage and inhibits dorsal organizer-specific genes from the ventral region. Chordin (Chrd) is an organizer-specific secreted Bmp antagonist whose expression is primarily activated by Gsc. Alternatively, chrd expression is repressed by Bmp/Ventx1.1 in the ventral/epidermal region. However, the regulatory mechanisms underlying the transcription mediated by Gsc and Ventx1.1 remain elusive. Here, we found that the chrd promoter contained two cis-acting response elements that responded negatively to Ventx1.1 and positively to Gsc. In the ventral/ectodermal region, Ventx1.1 was directly bound to the Ventx1.1 response element (VRE) and inhibited chrd transcription. In the organizer region, Gsc was bound to the Gsc response elements (GRE) to activate chrd transcription. The Gsc-mediated positive response on the chrd promoter completely depended on another adjacent Wnt response cis-acting element (WRE), which was the TCF7 (also known as Tcf1) binding element. Site-directed mutagenesis of VRE, GRE, or WRE completely abolished the repressive or activator activity of Ventx1.1 and Gsc, respectively. The ChIP-PCR results confirmed the direct binding of Ventx1.1 and Gsc/Tcf7 to VRE and GRE/WRE, respectively. These results demonstrated that chrd expression is oppositely modulated by homeobox TFs, Ventx1.1, and Gsc/Tcf7 during the embryonic patterning of Xenopus gastrula.


Assuntos
Gástrula , Glicoproteínas , Proteína Goosecoid , Fatores de Transcrição , Proteínas de Xenopus , Xenopus laevis , Animais , Gástrula/metabolismo , Genes Homeobox , Proteína Goosecoid/genética , Proteína Goosecoid/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Glicoproteínas/metabolismo
9.
Cells ; 11(15)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892595

RESUMO

During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as "refractory/naïve" and "competent/formative" pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific "Developmental Potential Guardians" (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an "endogenous reprogramming" process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.


Assuntos
Células-Tronco Pluripotentes , Animais , Carcinogênese/metabolismo , Diferenciação Celular/fisiologia , Crista Neural , Células-Tronco Pluripotentes/metabolismo , Vertebrados
10.
Mol Cells ; 41(12): 1061-1071, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30590909

RESUMO

From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Diferenciação Celular , Sistema Nervoso , Transdução de Sinais , Proteínas de Xenopus/metabolismo
11.
Elife ; 62017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654420

RESUMO

During early embryogenesis, cells must exit pluripotency and commit to multiple lineages in all germ-layers. How this transition is operated in vivo is poorly understood. Here, we report that MEK1 and the Nanog-related transcription factor Ventx2 coordinate this transition. MEK1 was required to make Xenopus pluripotent cells competent to respond to all cell fate inducers tested. Importantly, MEK1 activity was necessary to clear the pluripotency protein Ventx2 at the onset of gastrulation. Thus, concomitant MEK1 and Ventx2 knockdown restored the competence of embryonic cells to differentiate. Strikingly, MEK1 appeared to control the asymmetric inheritance of Ventx2 protein following cell division. Consistently, when Ventx2 lacked a functional PEST-destruction motif, it was stabilized, displayed symmetric distribution during cell division and could efficiently maintain pluripotency gene expression over time. We suggest that asymmetric clearance of pluripotency regulators may represent an important mechanism to ensure the progressive assembly of primitive embryonic tissues.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , MAP Quinase Quinase 1/metabolismo , Células-Tronco Pluripotentes/enzimologia , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Animais
12.
Oncotarget ; 7(26): 39719-39729, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27175592

RESUMO

Identifying novel tumor suppressors holds promise for improving cancer treatment. Our recent studies identified VentX, a homeobox transcriptional factor, as a putative tumor suppressor. Here we demonstrate that VentX exerts strong inhibitory effects on the proliferation and survival of cancer cells, but not primary transformed cells, such as 293T cells. Mechanistically, both in vitro and in vivo data showed that VentX induces apoptosis of cancer cells in a p53-independent manner. We found that VentX expression can be induced by chemotherapeutic agents. Taken together, our findings suggest that VentX may function as a novel therapeutic target in cancer treatment.


Assuntos
Apoptose , Proteínas de Homeodomínio/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Transplante de Neoplasias , Fatores de Transcrição/metabolismo
13.
Oncotarget ; 7(52): 86889-86901, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27888632

RESUMO

Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML.


Assuntos
Proliferação de Células/genética , Células Eritroides/metabolismo , Proteínas de Homeodomínio/genética , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular/genética , Feminino , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa