Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(2): 519-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184778

RESUMO

Precise regulation of flowering time is critical for cereal crops to synchronize reproductive development with optimum environmental conditions, thereby maximizing grain yield. The plant-specific gene GIGANTEA (GI) plays an important role in the control of flowering time, with additional functions on the circadian clock and plant stress responses. In this study, we show that GI loss-of-function mutants in a photoperiod-sensitive tetraploid wheat background exhibit significant delays in heading time under both long-day (LD) and short-day photoperiods, with stronger effects under LD. However, this interaction between GI and photoperiod is no longer observed in isogenic lines carrying either a photoperiod-insensitive allele in the PHOTOPERIOD1 (PPD1) gene or a loss-of-function allele in EARLY FLOWERING 3 (ELF3), a known repressor of PPD1. These results suggest that the normal circadian regulation of PPD1 is required for the differential effect of GI on heading time in different photoperiods. Using crosses between mutant or transgenic plants of GI and those of critical genes in the flowering regulation pathway, we show that GI accelerates wheat heading time by promoting FLOWERING LOCUS T1 (FT1) expression via interactions with ELF3, VERNALIZATION 2 (VRN2), CONSTANS (CO), and the age-dependent microRNA172-APETALA2 (AP2) pathway, at both transcriptional and protein levels. Our study reveals conserved GI mechanisms between wheat and Arabidopsis but also identifies specific interactions of GI with the distinctive photoperiod and vernalization pathways of the temperate grasses. These results provide valuable knowledge for modulating wheat heading time and engineering new varieties better adapted to a changing environment.


Assuntos
Relógios Circadianos , Triticum , Triticum/fisiologia , Flores , Fotoperíodo , Genes de Plantas/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas/genética
2.
J Exp Bot ; 73(12): 4079-4093, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35394528

RESUMO

The external cues that trigger timely flowering vary greatly across tropical and temperate plant taxa, the latter relying on predictable seasonal fluctuations in temperature and photoperiod. In the grass family (Poaceae) for example, species of the subfamily Pooideae have become specialists of the northern temperate hemisphere, generating the hypothesis that their progenitor evolved a flowering response to long days from a short-day or day-neutral ancestor. Sampling across the Pooideae, we found support for this hypothesis, and identified several secondary shifts to day-neutral flowering and one to short-day flowering in a tropical highland clade. To explain the proximate mechanisms for the secondary transition back to short-day-regulated flowering, we investigated the expression of CCT domain genes, some of which are known to repress flowering in cereal grasses under specific photoperiods. We found a shift in CONSTANS 1 and CONSTANS 9 expression that coincides with the derived short-day photoperiodism of our exemplar species Nassella pubiflora. This sets up the testable hypothesis that trans- or cis-regulatory elements of these CCT domain genes were the targets of selection for major niche shifts in Pooideae grasses.


Assuntos
Genes de Plantas , Fotoperíodo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/fisiologia
3.
Plant J ; 86(2): 145-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26947149

RESUMO

Optimising the timing of flowering contributes to successful sexual reproduction and yield in agricultural plants. FLOWERING LOCUS T (FT) genes, first identified in Arabidopsis thaliana (Arabidopsis), promote flowering universally, but the upstream flowering regulatory pathways can differ markedly among plants. Flowering in the model legume, Medicago truncatula (Medicago) is accelerated by winter cold (vernalisation) followed by long day (LD) photoperiods leading to elevated expression of the floral activator, FT-like gene FTa1. However, Medicago, like some other plants, lacks the activator CONSTANS (CO) and the repressor FLOWERING LOCUS C (FLC) genes which directly regulate FT and are key to LD and vernalisation responses in Arabidopsis. Conversely, Medicago has a VERNALISATION2-LIKE VEFS-box gene (MtVRN2). In Arabidopsis AtVRN2 is a key member of a Polycomb complex involved in stable repression of Arabidopsis FLC after vernalisation. VRN2-like genes have been identified in other eudicot plants, but their function has never been reported. We show that Mtvrn2 mutants bypass the need for vernalisation for early flowering in LD conditions in Medicago. Investigation of the underlying mechanism by transcriptome analysis reveals that Mtvrn2 mutants precociously express FTa1 and other suites of genes including floral homeotic genes. Double-mutant analysis indicates that early flowering is dependent on functional FTa1. The broad significance of our study is that we have demonstrated a function for a VRN2-like VEFS gene beyond the Brassicaceae. In particular, MtVRN2 represses the transition to flowering in Medicago by regulating the onset of expression of the potent floral activator, FTa1.


Assuntos
Flores/fisiologia , Medicago truncatula/fisiologia , Proteínas de Plantas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Perfilação da Expressão Gênica , Medicago truncatula/genética , Fotoperíodo , Proteínas de Plantas/genética , Proteínas do Grupo Polycomb/genética
4.
Plant Cell Environ ; 40(8): 1629-1642, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28426157

RESUMO

In addition to its role in vernalization, temperature is an important environmental stimulus in determining plant growth and development. We used factorial combinations of two photoperiods (16H, 12H) and three temperature levels (11, 18 and 25 °C) to study the temperature responses of 19 wheat cultivars with established genetic relationships. Temperature produced more significant effects on plant development than photoperiod, with strong genotypic components. Wheat genotypes with PPD-D1 photoperiod sensitive allele were sensitive to temperature; their development was delayed by higher temperature, which intensified under non-inductive conditions. The effect of temperature on plant development was not proportional; it influenced the stem elongation to the largest extent, and warmer temperature lengthened the lag phase between the detection of first node and the beginning of intensive stem elongation. The gene expression patterns of VRN1, VRN2 and PPD1 were also significantly modified by temperature, while VRN3 was more chronologically regulated. The associations between VRN1 and VRN3 gene expression with early apex development were significant in all treatments but were only significant for later plant developmental phases under optimal conditions (16H and 18 °C). Under 16H, the magnitude of the transient peak expression of VRN2 observed at 18 and 25 °C associated with the later developmental phases.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes Controladores do Desenvolvimento , Genes de Plantas , Fotoperíodo , Temperatura , Triticum/genética , Triticum/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Fenótipo , Análise de Componente Principal , Triticum/anatomia & histologia
5.
Ann Bot ; 112(9): 1683-703, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24220102

RESUMO

BACKGROUND AND AIMS: A model to predict anthesis time of a wheat plant from environmental and genetic information requires integration of current concepts in physiological and molecular biology. This paper describes the structure of an integrated model and quantifies its response mechanisms. METHODS: Literature was reviewed to formulate the components of the model. Detailed re-analysis of physiological observations are utilized from a previous publication by the second two authors. In this approach measurements of leaf number and leaf and primordia appearance of near isogenic lines of spring and winter wheat grown for different durations in different temperature and photoperiod conditions are used to quantify mechanisms and parameters to predict time of anthesis. KEY RESULTS: The model predicts the time of anthesis from the length of sequential phases: 1, embryo development; 2, dormant; 3, imbibed/emerging; 4, vegetative; 5, early reproductive; 6, pseudo-stem extension; and 7, ear development. Phase 4 ends with vernalization saturation (VS), Phase 5 with terminal spikelet (TS) and Phase 6 with flag leaf ligule appearance (FL). The durations of Phases 4 and 5 are linked to the expression of Vrn genes and are calculated in relation to change in Haun stage (HS) to account for the effects of temperature per se. Vrn1 must be expressed to sufficient levels for VS to occur. Vrn1 expression occurs at a base rate of 0·08/HS in winter 'Batten' and 0·17/HS in spring 'Batten' during Phases 1, 3 and 4. Low temperatures promote expression of Vrn1 and accelerate progress toward VS. Our hypothesis is that a repressor, Vrn4, must first be downregulated for this to occur. Rates of Vrn4 downregulation and Vrn1 upregulation have the same exponential response to temperature, but Vrn4 is quickly upregulated again at high temperatures, meaning short exposure to low temperature has no impact on the time of VS. VS occurs when Vrn1 reaches a relative expression of 0·76 and Vrn3 expression begins. However, Vrn2 represses Vrn3 expression so Vrn1 must be further upregulated to repress Vrn2 and enable Vrn3 expression. As a result, the target for Vrn1 to trigger VS was 0·76 in 8-h photoperiods (Pp) and increased at 0·026/HS under 16-h Pp as levels of Vrn2 increased. This provides a mechanism to model short-day vernalization. Vrn3 is expressed in Phase 5 (following VS), and apparent rates of Vrn3 expression increased from 0·15/HS at 8-h Pp to 0·33/HS at 16-h Pp. The final number of leaves is calculated as a function of the HS at which TS occurred (TS(HS)): 2·86 + 1·1 × TS(HS). The duration of Phase 6 is then dependent on the number of leaves left to emerge and how quickly they emerge. CONCLUSIONS: The analysis integrates molecular biology and crop physiology concepts into a model framework that links different developmental genes to quantitative predictions of wheat anthesis time in different field situations.


Assuntos
Flores/fisiologia , Modelos Biológicos , Triticum/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Moleculares
6.
Plant Signal Behav ; 10(4): e1010868, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25924005

RESUMO

The aerial plant architecture is built by phytomeres which are metameric units, each composed of a stem segment (internode) and a leaf with axillary meristem (node). In Arabidopsis thaliana, fully developed flower phytomeres lack the leaf even if they temporarily exhibit a cryptic bract (CB) during early development. Recently, we demonstrated that the CB becomes more prominent under non-inductive short-day conditions. However, a full outgrowth as cauline leaf is prevented by Polycomb-group (Pc-G) proteins which silence the MADS gene FLOWERING LOCUS C (FLC) encoding a repressor of FLOWERING LOCUS T (FT). Also the loss of SHORT VEGETATIVE PHASE (SVP) supresses ectopic leaves at the base of Pc-G deficient pedicels. Here we present new expression data of flowering genes LEAFY (LFY) and TWIN SISTER OF FT (TSF) and the re-analysis of morphological changes in Pc-G deficient plants suggesting that the specifications of CB and floral meristem (FM) are separated in time.


Assuntos
Arabidopsis/anatomia & histologia , Flores/anatomia & histologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Flores/ultraestrutura , Modelos Biológicos , Fotoperíodo , Brotos de Planta/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa