Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279051

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Camundongos , Animais , Hiperplasia/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Proliferação de Células , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Fatores de Transcrição/metabolismo , Fenótipo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Movimento Celular
2.
J Ethnopharmacol ; 297: 115547, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35870688

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS: We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS: FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION: FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Tribulus , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Preparações Farmacêuticas/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
3.
Front Cardiovasc Med ; 9: 936287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837612

RESUMO

Background: Vascular smooth muscle cell (VSMC) phenotype switching has been preliminarily found in aortic aneurysms. However, two major questions were raised: (1) What factors drive phenotypic switching of VSMCs in aortic aneurysms? (2) What role does VSMC phenotype transformation play in aortic aneurysms? We speculated that the interaction between infiltrated immune cells and VSMCs played a pivotal role in aortic aneurysm expansion. Materials and Methods: We obtained single-cell transcriptome data GSE155468 that incorporate eight aortic aneurysm samples and three normal aorta samples. A standard single-cell analysis procedure was performed by Seurat (v3.1.2) for identifying the general cell components. Subsequently, VSMCs were extracted separately and re-clustered for identifying switched VSMC phenotypes. VSMC phenotype annotation was relied on the definitions of specific VSMC phenotypes in published articles. Vital VSMC phenotypes were validated by immunofluorescence. Next, identified immune cells and annotated vital VSMC phenotypes were extracted for analyzing the intercellular communication. R package CellChat (v1.1.3) was used for investigating the communication strength, signaling pathways, and communication patterns between various VSMC phenotypes and immune cells. Result: A total of 42,611 cells were identified as CD4 + T cells, CD8 + T cells, VSMC, monocytes, macrophages, fibroblasts, endothelial cells, and B cells. VSMCs were further classified into contractile VSMCs, secreting VSMCs, macrophage-like VSMCs, mesenchymal-like VSMCs, adipocyte-like VSMCs, and T-cell-like VSMCs. Intercellular communication analysis was performed between immune cells (macrophages, B cells, CD4 + T cells, CD8 + T cells) and immune related VSMCs (macrophage-like VSMCs, mesenchymal-like VSMCs, T-cell-like VSMCs, contractile VSMCs). Among selected cell populations, 27 significant signaling pathways with 61 ligand-receptor pairs were identified. Macrophages and macrophage-like VSMCs both assume the roles of a signaling sender and receiver, showing the highest communication capability. T cells acted more as senders, while B cells acted as receivers in the communication network. T-cell-like VSMCs and contractile VSMCs were used as senders, while mesenchymal-like VSMCs played a poor role in the communication network. Signaling macrophage migration inhibitory factor (MIF), galectin, and C-X-C motif chemokine ligand (CXCL) showed high information flow of intercellular communication, while signaling complement and chemerin were completely turned on in aortic aneurysms. MIF and galectin promoted VSMC switch into macrophage-like phenotypes, CXCL, and galectin promoted VSMCs transform into T-cell-like phenotypes. MIF, galectin, CXCL, complement, and chemerin all mediated the migration and recruitment of immune cells into aortic aneurysms. Conclusion: The sophisticated intercellular communication network existed between immune cells and immune-related VSMCs and changed as the aortic aneurysm progressed. Signaling MIF, galectin, CXCL, chemerin, and complement made a significant contribution to aortic aneurysm progression through activating immune cells and promoting immune cell migration, which could serve as the potential target for the treatment of aortic aneurysms.

4.
Life Sci ; 237: 116943, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604109

RESUMO

AIMS: The purpose of this study was to investigate the therapeutic effect of artemisinin (ART) on atherosclerosis and explore the molecular mechanisms involved by RNA sequencing (RNA-Seq). MAIN METHODS: Eight-week-old male ApoE-/- mice were treated with ART for eight weeks. Atherosclerotic lesion sizes were determined by Oil Red O staining, and RNA-Seq was used to detect the profile of differentially expressed genes following the administration of ART. The expressions of contractile phenotypic markers were detected by western blot and qRT-PCR, and the ability of the MOVAS cells to migrate and proliferate were assessed using the wound healing and CCK8 assays. KEY FINDINGS: Artemisinin treatment significantly reduced plaque area in the ApoE-/- mice and increased the expression of contractile phenotypic markers. RNA-Seq of aorta tissue revealed a distinct change in gene expression patterns after the mice were treated with ART. Our bioinformatics analysis demonstrated that the most prominently enriched pathway was a set of genes involved in vascular smooth muscle contractile function. Using an in vitro cell model, we demonstrated that ART could effectively reverse PDGF-activated MOVAS migration and proliferation, and elevate the level of proteins involved in the contractile phenotype. SIGNIFICANCE: We provide in vivo and in vitro evidence supporting a role for ART in the suppression of atherosclerosis, partly through the inhibition of vascular smooth muscle cell phenotype switching to a de-differentiated phenotype. These data further advances our understanding for a potential role for ART and suggests that ART is an excellent candidate for the treatment of atherosclerosis.


Assuntos
Antimaláricos/farmacologia , Apolipoproteínas E/fisiologia , Artemisininas/farmacologia , Aterosclerose/prevenção & controle , Proliferação de Células , Modelos Animais de Doenças , Músculo Liso Vascular/citologia , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa