Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
Annu Rev Immunol ; 33: 79-106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25493335

RESUMO

Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Necrose/metabolismo , Transdução de Sinais , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Evolução Biológica , Morte Celular , Humanos , Inflamassomos/metabolismo , Inflamação/genética , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Doenças Parasitárias/genética , Doenças Parasitárias/metabolismo , Doenças Parasitárias/patologia , Fosforilação , Ligação Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ubiquitinação , Viroses/genética , Viroses/metabolismo , Viroses/patologia
2.
Immunity ; 57(1): 124-140.e7, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38157853

RESUMO

Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.


Assuntos
Coinfecção , Humanos , Células Matadoras Naturais/metabolismo , Diferenciação Celular
3.
Immunity ; 54(2): 247-258.e7, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33444549

RESUMO

The vaccine strain against smallpox, vaccinia virus (VACV), is highly immunogenic yet causes relatively benign disease. These attributes are believed to be caused by gene loss in VACV. Using a targeted small interfering RNA (siRNA) screen, we identified a viral inhibitor found in cowpox virus (CPXV) and other orthopoxviruses that bound to the host SKP1-Cullin1-F-box (SCF) machinery and the essential necroptosis kinase receptor interacting protein kinase 3 (RIPK3). This "viral inducer of RIPK3 degradation" (vIRD) triggered ubiquitination and proteasome-mediated degradation of RIPK3 and inhibited necroptosis. In contrast to orthopoxviruses, the distantly related leporipoxvirus myxoma virus (MYXV), which infects RIPK3-deficient hosts, lacks a functional vIRD. Introduction of vIRD into VACV, which encodes a truncated and defective vIRD, enhanced viral replication in mice. Deletion of vIRD reduced CPXV-induced inflammation, viral replication, and mortality, which were reversed in RIPK3- and MLKL-deficient mice. Hence, vIRD-RIPK3 drives pathogen-host evolution and regulates virus-induced inflammation and pathogenesis.


Assuntos
Vírus da Varíola Bovina/fisiologia , Varíola Bovina/imunologia , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Animais , Evolução Molecular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Camundongos , Camundongos Knockout , Necroptose/genética , Orthopoxvirus , Filogenia , Proteínas Quinases/genética , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Análise de Sequência de RNA , Proteínas Virais/genética , Replicação Viral
4.
Proc Natl Acad Sci U S A ; 120(35): e2304242120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607234

RESUMO

Zoonotic poxviruses such as mpox virus (MPXV) continue to threaten public health safety since the eradication of smallpox. Vaccinia virus (VACV), the prototypic poxvirus used as the vaccine strain for smallpox eradication, is the best-characterized member of the poxvirus family. VACV encodes a serine protease inhibitor 1 (SPI-1) conserved in all orthopoxviruses, which has been recognized as a host range factor for modified VACV Ankara (MVA), an approved smallpox vaccine and a promising vaccine vector. FAM111A (family with sequence similarity 111 member A), a nuclear protein that regulates host DNA replication, was shown to restrict the replication of a VACV SPI-1 deletion mutant (VACV-ΔSPI-1) in human cells. Nevertheless, the detailed antiviral mechanisms of FAM111A were unresolved. Here, we show that FAM111A is a potent restriction factor for VACV-ΔSPI-1 and MVA. Deletion of FAM111A rescued the replication of MVA and VACV-ΔSPI-1 and overexpression of FAM111A significantly reduced viral DNA replication and virus titers but did not affect viral early gene expression. The antiviral effect of FAM111A necessitated its trypsin-like protease domain and DNA-binding domain but not the PCNA-interacting motif. We further identified that FAM111A translocated into the cytoplasm upon VACV infection by degrading the nuclear pore complex via its protease activity, interacted with VACV DNA-binding protein I3, and promoted I3 degradation through autophagy. Moreover, SPI-1 from VACV, MPXV, or lumpy skin disease virus was able to antagonize FAM111A by prohibiting its nuclear export. Our findings reveal the detailed mechanism by which FAM111A inhibits VACV and provide explanations for the immune evasive function of VACV SPI-1.


Assuntos
Poxviridae , Varíola , Vacínia , Animais , Bovinos , Humanos , Vaccinia virus/genética , Inibidores de Serina Proteinase , Proteínas Virais/genética , Replicação do DNA , Especificidade de Hospedeiro , DNA Viral , Replicação Viral , Receptores Virais
5.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093836

RESUMO

Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.


Assuntos
Cinesinas , Vacínia , Extratos Celulares , Humanos , Microtúbulos/metabolismo , Vacínia/metabolismo , Vaccinia virus , Vírion/fisiologia
6.
Eur J Immunol ; 54(10): e2451135, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39086059

RESUMO

Inflammasomes are essential for host defense, recognizing foreign or stress signals to trigger immune responses, including maturation of IL-1 family cytokines and pyroptosis. Here, NLRP1 is emerging as an important sensor of viral infection in barrier tissues. NLRP1 is activated by various stimuli, including viral double-stranded (ds) RNA, ribotoxic stress, and inhibition of dipeptidyl peptidases 8 and 9 (DPP8/9). However, certain viruses, most notably the vaccinia virus, have evolved strategies to subvert inflammasome activation or effector functions. Using the modified vaccinia virus Ankara (MVA) as a model, we investigated how the vaccinia virus inhibits inflammasome activation. We confirmed that the early gene F1L plays a critical role in inhibiting NLRP1 inflammasome activation. Interestingly, it blocks dsRNA and ribotoxic stress-dependent NLRP1 activation without affecting its DPP9-inhibition-mediated activation. Complementation and loss-of-function experiments demonstrated the sufficiency and necessity of F1L in blocking NLRP1 activation. Furthermore, we found that F1L-deficient, but not wild-type MVA, induced ZAKα activation. Indeed, an F1L-deficient virus was found to disrupt protein translation more prominently than an unmodified virus, suggesting that F1L acts in part upstream of ZAKα. These findings underscore the inhibitory role of F1L on NLRP1 inflammasome activation and provide insight into viral evasion of host defenses and the intricate mechanisms of inflammasome activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamassomos , Proteínas NLR , Vaccinia virus , Vaccinia virus/imunologia , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Proteínas NLR/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/imunologia , Células HEK293 , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Vacínia/imunologia , Animais , Camundongos , Evasão da Resposta Imune
7.
J Virol ; 98(7): e0052124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38874361

RESUMO

The reoccurrence of successive waves of SARS-CoV-2 variants suggests the exploration of more vaccine alternatives is imperative. Modified vaccinia virus Ankara (MVA) is a virus vector exhibiting excellent safety as well as efficacy for vaccine development. Here, a series of recombinant MVAs (rMVAs) expressing monomerized or trimerized S proteins from different SARS-CoV-2 variants are engineered. Trimerized S expressed from rMVAs is found predominantly as trimers on the surface of infected cells. Remarkably, immunization of mice with rMVAs demonstrates that S expressed in trimer elicits higher levels of binding IgG and IgA, as well as neutralizing antibodies for matched and mismatched S proteins than S in the monomer. In addition, trimerized S expressed by rMVA induces enhanced cytotoxic T-cell responses than S in the monomer. Importantly, the rMVA vaccines expressing trimerized S exhibit superior protection against a lethal SARS-CoV-2 challenge as the immunized animals all survive without displaying any pathological conditions. This study suggests that opting for trimerized S may represent a more effective approach and highlights that the MVA platform serves as an ideal foundation to continuously advance SARS-CoV-2 vaccine development. IMPORTANCE: MVA is a promising vaccine vector and has been approved as a vaccine for smallpox and mpox. Our analyses suggested that recombinant MVA expressing S in trimer (rMVA-ST) elicited robust cellular and humoral immunity and was more effective than MVA-S-monomer. Importantly, the rMVA-ST vaccine was able to stimulate decent cross-reactive neutralization against pseudoviruses packaged using S from different sublineages, including Wuhan, Delta, and Omicron. Remarkably, mice immunized with rMVA-ST were completely protected from a lethal challenge of SARS-CoV-2 without displaying any pathological conditions. Our results demonstrated that an MVA vectored vaccine expressing trimerized S is a promising vaccine candidate for SARS-CoV-2 and the strategy might be adapted for future vaccine development for coronaviruses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vaccinia virus , Animais , Vaccinia virus/genética , Vaccinia virus/imunologia , Camundongos , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Feminino , Humanos , Camundongos Endogâmicos BALB C , Multimerização Proteica , Imunoglobulina G/imunologia , Linfócitos T Citotóxicos/imunologia , Imunoglobulina A/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/genética , Vetores Genéticos
8.
J Virol ; 98(3): e0148523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38412044

RESUMO

Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE: Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.


Assuntos
Filaminas , Vaccinia virus , Proteínas Virais , Humanos , Linhagem Celular , DNA/metabolismo , Filaminas/genética , Filaminas/metabolismo , NF-kappa B/metabolismo , Vacínia/virologia , Vaccinia virus/patogenicidade , Vaccinia virus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais
9.
Mol Ther ; 32(7): 2406-2422, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734899

RESUMO

Vaccinia viruses (VACVs) are versatile therapeutic agents and different features of various VACV strains allow for a broad range of therapeutic applications. Modified VACV Ankara (MVA) is a particularly altered VACV strain that is highly immunogenic, incapable of replicating in mammalian hosts, and broadly used as a safe vector for vaccination. Alternatively, Western Reserve (WR) or Copenhagen (Cop) are VACV strains that efficiently replicate in cancer cells and, therefore, are used to develop oncolytic viruses. However, the immune evasion capacity of WR or Cop hinders their ability to elicit antitumor immune responses, which is crucial for efficacy in the clinic. Here, we describe a new VACV strain named Immune-Oncolytic VACV Ankara (IOVA), which combines efficient replication in cancer cells with induction of immunogenic tumor cell death (ICD). IOVA was engineered from an MVA ancestor and shows superior cytotoxicity in tumor cells. In addition, the IOVA genome incorporates mutations that lead to massive fusogenesis of tumor cells, which contributes to improved antitumor effects. In syngeneic mouse tumor models, the induction of ICD results in robust antitumor immunity directed against tumor neo-epitopes and eradication of large established tumors. These data present IOVA as an improved immunotherapeutic oncolytic vector.


Assuntos
Morte Celular Imunogênica , Terapia Viral Oncolítica , Vírus Oncolíticos , Vaccinia virus , Vaccinia virus/genética , Vaccinia virus/imunologia , Animais , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Camundongos , Humanos , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Replicação Viral , Vetores Genéticos/genética
10.
Cell Mol Life Sci ; 81(1): 400, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264480

RESUMO

Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.


Assuntos
Células Dendríticas , Lamina Tipo A , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos , NF-kappa B/metabolismo , Vaccinia virus/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Camundongos Knockout , Vacínia/imunologia , Células Th1/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(24): e2202069119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35679343

RESUMO

Current vaccines have greatly diminished the severity of the COVID-19 pandemic, even though they do not entirely prevent infection and transmission, likely due to insufficient immunity in the upper respiratory tract. Here, we compare intramuscular and intranasal administration of a live, replication-deficient modified vaccinia virus Ankara (MVA)-based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (S) vaccine to raise protective immune responses in the K18-hACE2 mouse model. Using a recombinant MVA expressing firefly luciferase for tracking, live imaging revealed luminescence of the respiratory tract of mice within 6 h and persisting for 3 d following intranasal inoculation, whereas luminescence remained at the site of intramuscular vaccination. Intramuscular vaccination induced S-binding-Immunoglobulin G (IgG) and neutralizing antibodies in the lungs, whereas intranasal vaccination also induced Immunoglobulin A (IgA) and higher levels of antigen-specific CD3+CD8+IFN-γ+ T cells. Similarly, IgG and neutralizing antibodies were present in the blood of mice immunized intranasally and intramuscularly, but IgA was detected only after intranasal inoculation. Intranasal boosting increased IgA after intranasal or intramuscular priming. While intramuscular vaccination prevented morbidity and cleared SARS-CoV-2 from the respiratory tract within several days after challenge, intranasal vaccination was more effective as neither infectious virus nor viral messenger (m)RNAs were detected in the nasal turbinates or lungs as early as 2 d after challenge, indicating prevention or rapid elimination of SARS-CoV-2 infection. Additionally, we determined that neutralizing antibody persisted for more than 6 mo and that serum induced to the Wuhan S protein neutralized pseudoviruses expressing the S proteins of variants, although with less potency, particularly for Beta and Omicron.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunoglobulina A , Sistema Respiratório , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vaccinia virus , Administração Intranasal , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , COVID-19/transmissão , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos , Camundongos Transgênicos , Sistema Respiratório/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Vaccinia virus/genética , Vaccinia virus/imunologia
12.
Emerg Infect Dis ; 30(2): 321-324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270156

RESUMO

Among persons born in China before 1980 and tested for vaccinia virus Tiantan strain (VVT), 28.7% (137/478) had neutralizing antibodies, 71.4% (25/35) had memory B-cell responses, and 65.7% (23/35) had memory T-cell responses to VVT. Because of cross-immunity between the viruses, these findings can help guide mpox vaccination strategies in China.


Assuntos
Mpox , Varíola , Humanos , Varíola/prevenção & controle , Vacinação , Anticorpos Neutralizantes , China/epidemiologia , Vaccinia virus
13.
Int J Cancer ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400317

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a particularly aggressive disease with few effective treatments. The PDAC tumor immune microenvironment (TIME) is known to be immune suppressive. Oncolytic viruses can increase tumor immunogenicity via immunogenic cell death (ICD). We focused on tumor-selective (vvDD) and cytokine-armed Western-reserve vaccinia viruses (vvDD-IL2 and vvDD-IL15) and infected carcinoma cell lines as well as patient-derived primary PDAC cells. In co-culture experiments, we investigated the cytotoxic response and the activation of human natural killer (NK). Infection and virus replication were assessed by measuring virus encoded YFP. We then analyzed intracellular signaling processes and oncolysis via in-depth proteomic analysis, immunoblotting and TUNEL assay. Following the co-culture of mock or virus infected carcinoma cell lines with allogenic PBMCs or NK cell lines, CD56+ NK cells were analyzed with respect to their activation, cytotoxicity and effector function. Both, dose- and time-dependent release of danger signals following infection were measured. Viruses effectively entered PDAC cells, emitted YFP signals and resulted in concomitant oncolysis. The proteome showed reprogramming of normally active core signaling pathways in PDAC (e.g., MAPK-ERK signaling). Danger-associated molecular patterns were released upon infection and stimulated co-cultured NK cells for enhanced effector cytotoxicity. NK cell subtyping revealed enhanced numbers and activation of a rare CD56dimCD16dim population. Tumor cell killing was primarily triggered via Fas ligands rather than granule release, resulting in marked apoptosis. Overall, the cytokine-armed vaccinia viruses induced NK cell activation and enhanced cytotoxicity toward human PDAC cells in vitro. We could show that cytokine-armed virus targets the carcinoma cells and thus has great potential to modulate the TIME in PDAC.

14.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351514

RESUMO

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Vaccinia virus/fisiologia , Neutrófilos/patologia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-Quinases , Neoplasias/patologia , Microambiente Tumoral
15.
J Gen Virol ; 105(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39431915

RESUMO

Poxviruses are dsDNA viruses infecting a wide range of cell types, where they need to contend with multiple host antiviral pathways, including DNA and RNA sensing. Accordingly, poxviruses encode a variety of immune antagonists, most of which are expressed early during infection from within virus cores before uncoating and genome release take place. Amongst these antagonists, the poxvirus immune nuclease (poxin) counteracts the cyclic 2'3'-GMP-AMP (2'3'-cGAMP) synthase (cGAS)/stimulator of interferon genes DNA sensing pathway by degrading the immunomodulatory cyclic dinucleotide 2'3'-cGAMP, the product of activated cGAS. Here, we use poxviruses engineered to lack poxin to investigate how virus infection triggers the activation of STING and its downstream transcription factor interferon-responsive factor 3 (IRF3). Our results demonstrate that poxin-deficient vaccinia virus (VACV) and ectromelia virus (ECTV) induce IRF3 activation in primary fibroblasts and differentiated macrophages, although to a lower extent in VACV compared to ECTV. In fibroblasts, IRF3 activation was detectable at 10 h post-infection (hpi) and was abolished by the DNA replication inhibitor cytosine arabinoside (AraC), indicating that the sensing was mediated by replicated genomes. In macrophages, IRF3 activation was detectable at 4 hpi, and this was not affected by AraC, suggesting that the sensing in this cell type was induced by genomes released from incoming virions. In agreement with this, macrophages expressing short hairpin RNA (shRNA) against the virus uncoating factor D5 showed reduced IRF3 activation upon infection. Collectively, our data show that the viral genome is sensed by cGAS prior to and during genome replication, but immune activation downstream of it is effectively suppressed by poxin. Our data also support the model where virus uncoating acts as an immune evasion strategy to simultaneously cloak the viral genome and allow the expression of early immune antagonists.


Assuntos
Nucleotidiltransferases , Vaccinia virus , Replicação Viral , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Vaccinia virus/genética , Vaccinia virus/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Fibroblastos/virologia , Vírus da Ectromelia/genética , Macrófagos/virologia , Genoma Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Exonucleases/metabolismo , Exonucleases/genética , Animais , Interações Hospedeiro-Patógeno , Replicação do DNA
16.
Biochem Biophys Res Commun ; 734: 150619, 2024 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-39232458

RESUMO

Since the emergence of a global outbreak of mpox in 2022, understanding the transmission pathways and mechanisms of Orthopoxviruses, including vaccinia virus (VACV), has become paramount. Nanoplastic pollution has become a significant global issue due to its widespread presence in the environment and potential adverse effects on human health. These emerging pollutants pose substantial risks to both living organisms and the environment, raising serious health concerns related to their proliferation. Despite this, the effects of nanoparticles on viral transmission dynamics remain unclear. This study explores how polystyrene nanoparticles (PS-NPs) influence the transmission of VACV through migrasomes. We demonstrate that PS-NPs accelerate the formation of migrasomes early in the infection process, facilitating VACV entry as soon as 15 h post-infection (hpi), compared to the usual onset at 36 hpi. Immunofluorescence and transmission electron microscopy (TEM) reveal significant co-localization of VACV with migrasomes induced by PS-NPs by 15 hpi. This interaction coincides with an increase in lipid droplet size, attributed to higher cholesterol levels influenced by PS-NPs. By 36 hpi, migrasomes exposed to both PS-NPs and VACV exhibit distinct features, such as retraction fibers and larger lipid droplets, emphasizing their critical role in cargo transport during viral infections. These results suggest that PS-NPs may act as modulators of viral transmission dynamics through migrasomes, with potential implications for antiviral strategies and environmental health.


Assuntos
Nanopartículas , Poliestirenos , Vaccinia virus , Poliestirenos/química , Nanopartículas/química , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/fisiologia , Vaccinia virus/metabolismo , Humanos , Microplásticos/toxicidade , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Vacínia/virologia , Vacínia/metabolismo , Vacínia/transmissão
17.
J Virol ; 97(7): e0196422, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37358450

RESUMO

Porcine epidemic diarrhea virus is a swine pathogen that has been responsible for significant animal and economic losses worldwide in recent years. In this manuscript, we report the generation of a reverse genetics system C(RGS) for the highly virulent US PEDV strain Minnesota (PEDV-MN; GenBank accession number KF468752), which was based on the assembly and cloning of synthetic DNA, using vaccinia virus as a cloning vector. Viral rescue was only possible following the substitution of 2 nucleotides within the 5'UTR and 2 additional nucleotides within the spike gene, based on the sequence of the cell culture-adapted strains. Besides displaying a highly pathogenic phenotype in newborn piglets, in comparison with the parental virus, the rescued recombinant PEDV-MN was used to confirm that the PEDV spike gene has an important role in PEDV virulence and that the impact of an intact PEDV ORF3 on viral pathogenicity is modest. Moreover, a chimeric virus with a TGEV spike gene in the PEDV backbone generated with RGS was able to replicate efficiently in vivo and could be readily transmitted between piglets. Although this chimeric virus did not cause severe disease upon the initial infection of piglets, there was evidence of increasing pathogenicity upon transmission to contact piglets. The RGS described in this study constitutes a powerful tool with which to study PEDV pathogenesis and can be used to generate vaccines against porcine enteric coronaviruses. IMPORTANCE PEDV is a swine pathogen that is responsible for significant animal and economic losses worldwide. Highly pathogenic variants can lead to a mortality rate of up to 100% in newborn piglets. The generation of a reverse genetics system for a highly virulent PEDV strain originating from the United States is an important step in phenotypically characterizing PEDV. The synthetic PEDV mirrored the authentic isolate and displayed a highly pathogenic phenotype in newborn piglets. With this system, it was possible to characterize potential viral virulence factors. Our data revealed that an accessory gene (ORF3) has a limited impact on pathogenicity. However, as it is also now known for many coronaviruses, the PEDV spike gene is one of the main determinants of pathogenicity. Finally, we show that the spike gene of another porcine coronavirus, namely, TGEV, can be accommodated in the PEDV genome background, suggesting that similar viruses can emerge in the field via recombination.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Estados Unidos , Suínos , Virulência/genética , Vírus da Diarreia Epidêmica Suína/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Genética Reversa , Infecções por Coronavirus/prevenção & controle , Nucleotídeos , Diarreia
18.
J Virol ; 97(12): e0134323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975688

RESUMO

IMPORTANCE: Vaccinia virus infection requires virus-cell membrane fusion to complete entry during endocytosis; however, it contains a large viral fusion protein complex of 11 viral proteins that share no structure or sequence homology to all the known viral fusion proteins, including type I, II, and III fusion proteins. It is thus very challenging to investigate how the vaccinia fusion complex works to trigger membrane fusion with host cells. In this study, we crystallized the ectodomain of vaccinia H2 protein, one component of the viral fusion complex. Furthermore, we performed a series of mutational, biochemical, and molecular analyses and identified two surface loops containing 170LGYSG174 and 125RRGTGDAW132 as the A28-binding region. We also showed that residues in the N-terminal helical region (amino acids 51-90) are also important for H2 function.


Assuntos
Fusão de Membrana , Vaccinia virus , Proteínas Virais de Fusão , Internalização do Vírus , Vaccinia virus/química , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
19.
J Virol ; 97(3): e0175822, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916936

RESUMO

Recent studies have begun to reveal the complex and multifunctional roles of N6-methyladenosine (m6A) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated. YTHDF proteins also decreased at late stages of infection by herpes simplex virus 1 (HSV-1) but not human cytomegalovirus, suggesting that YTHDF2 is downregulated in response to infections that induce host shutoff. In line with this idea, YTHDF2 was potently downregulated upon infection with a VacV mutant expressing catalytically inactive forms of the decapping enzymes, D9 and D10, which fails to degrade dsRNA and induces a protein kinase R response that itself inhibits protein synthesis. Overexpression and RNAi-mediated depletion approaches further demonstrate that YTHDF2 does not directly affect VacV replication. Instead, experimental downregulation of YTHDF2 or the related family member, YTHDF1, induces a potent increase in interferon-stimulated gene expression and establishes an antiviral state that suppresses infection by either VacV or HSV-1. Combined, our data suggest that YTHDF2 is destabilized in response to infection-induced host shutoff and serves to augment host antiviral responses. IMPORTANCE There is increasing recognition of the importance of N6-methyladenosine (m6A) modifications to both viral and host mRNAs and the complex roles this modification plays in determining the fate of infection by diverse RNA and DNA viruses. However, in many instances, the functional contributions and importance of specific m6A writer, reader, and eraser proteins remains unknown. Here, we show that natural target cells but not transformed cell lines downregulate the YTH Domain Family (YTHDF) of m6A reader proteins, in particular YTHDF2, in response to shutoff of protein synthesis upon infection with the large DNA viruses, vaccinia virus (VacV), or herpes simplex virus type 1. We further reveal that YTHDF2 downregulation also occurs as part of the host protein kinase R response to a VacV shutoff mutant and that this downregulation of YTHDF family members functions to enhance interferon-stimulated gene expression to create an antiviral state.


Assuntos
Poxviridae , Proteínas de Ligação a RNA , Vaccinia virus , Vacínia , Humanos , Expressão Gênica , Interferons/metabolismo , Poxviridae/genética , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Vacínia/virologia , Vaccinia virus/metabolismo , Replicação Viral , Infecções por Poxviridae/virologia , Interações Hospedeiro-Patógeno
20.
J Med Virol ; 96(6): e29728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860589

RESUMO

Since May 2022, several countries outside of Africa experienced multiple clusters of monkeypox virus (MPXV)-associated disease. In the present study, anti-MPXV and anti-vaccinia virus (VACV) neutralizing antibody responses were evaluated in two cohorts of subjects from the general Italian population (one half born before the WHO-recommended end of smallpox vaccination in 1980, the other half born after). Higher titers (either against MPXV or VACV) were observed in the cohort of individuals born before the interruption of VACV vaccination. An association between VACV and MPXV antibody levels was observed, suggesting that the smallpox vaccination may confer some degree of cross-protection against MPXV infection. Results from this study highlight low levels of immunity toward the assessed Orthopoxviruses, especially in young adults, advocating the introduction of a VACV- or MPXV-specific vaccine in case of resurgence of monkeypox disease outbreaks.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Monkeypox virus , Vacina Antivariólica , Vacinação , Vaccinia virus , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Masculino , Adulto , Feminino , Vacina Antivariólica/imunologia , Vacina Antivariólica/administração & dosagem , Itália/epidemiologia , Monkeypox virus/imunologia , Adulto Jovem , Estudos Soroepidemiológicos , Pessoa de Meia-Idade , Vaccinia virus/imunologia , Mpox/epidemiologia , Mpox/imunologia , Adolescente , Varíola/prevenção & controle , Varíola/imunologia , Varíola/epidemiologia , Proteção Cruzada/imunologia , Idoso , Estudos de Coortes , Criança
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa