Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Emerg Infect Dis ; 28(2): 460-462, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34860154

RESUMO

We report detection of severe acute respiratory syndrome coronavirus 2 Omicron variant (B.1.1.529) in an asymptomatic, fully vaccinated traveler in a quarantine hotel in Hong Kong, China. The Omicron variant was also detected in a fully vaccinated traveler staying in a room across the corridor from the index patient, suggesting transmission despite strict quarantine precautions.


Assuntos
COVID-19 , SARS-CoV-2 , China/epidemiologia , Hong Kong/epidemiologia , Humanos , Quarentena
2.
BMC Med ; 20(1): 102, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236358

RESUMO

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Assuntos
COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
Epidemiol Infect ; 150: e162, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35975466

RESUMO

Symptoms are currently used as testing indicators for SARS-CoV-2 in England. In this study, we analysed national contact tracing data for England (NHS Test and Trace) for the period 1 December to 28 December 2021 to explore symptom differences between the variants, Delta and Omicron. We found that at least one of the symptoms currently used as indicators (fever, cough and loss of smell and taste) were reported in 61.5% of Omicron cases and 72.2% in Delta cases, suggesting that these symptoms are less predictive of Omicron infections. Nearly 40% of Omicron infections did not report any of the three key indicative symptoms, reinforcing the importance of the entire spectrum of symptoms for targeted testing. After adjusting for potential confounding factors, fever and cough were more commonly associated with Omicron infections compared to Delta, showing the importance of considering age and vaccination status when assessing symptom profiles. Sore throat was also more commonly reported in Omicron infections, and loss of smell and taste more commonly reported in Delta infections. Our study shows the value of continued monitoring of symptoms associated with SARS-CoV-2, as changes may influence the effectiveness of testing policy and case ascertainment approaches.


Assuntos
COVID-19 , Busca de Comunicante , Anosmia , COVID-19/epidemiologia , Tosse , Inglaterra/epidemiologia , Febre , Humanos , SARS-CoV-2/genética
4.
BMC Infect Dis ; 22(1): 645, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896965

RESUMO

BACKGROUND: Monoclonal antibodies (mAb) prevent COVID-19 progression when administered early. We compared mAb treatment outcomes among vaccinated and unvaccinated patients during Delta wave and assessed the feasibility of implementing stricter eligibility criteria in the event of mAb scarcity. METHODS: We conducted a retrospective observational study of casirivimab/imdevimab recipients with mild-to-moderate COVID-19 infection in an emergency department or outpatient infusion center (July 1-August 20, 2021). Primary outcome was all-cause hospital admission within 30 days post-treatment between vaccinated vs. unvaccinated patients during Delta surge in the Bronx, NY. RESULTS: A total of 250 patients received casirivimab/imdevimab (162 unvaccinated vs. 88 vaccinated). The median age was 39 years for unvaccinated patients, and 52 years for vaccinated patients (p < 0.0001). The median number of EUA criteria met was 1 for unvaccinated and 2 for vaccinated patients (p < 0.0001). Overall, 6% (15/250) of patients were admitted within 30 days post-treatment. Eleven unvaccinated patients (7%) were admitted within 30-days compared to 4 (5%) vaccinated patients (p = 0.48). CONCLUSIONS: All-cause 30-day admission was not statistically different between vaccinated and unvaccinated patients. When federal allocation of therapies is limited, programs must prioritize patients at highest risk of hospitalization and death regardless of vaccination status.


Assuntos
COVID-19 , Adulto , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , COVID-19/prevenção & controle , Humanos , Estudos Retrospectivos
5.
Tohoku J Exp Med ; 258(2): 103-110, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36002251

RESUMO

The exact profiles of the clinical symptoms related to the SARS-CoV-2 Omicron variant (B.1.1.529) remain largely uncertain. Therefore, this study aimed to clarify the clinical manifestations of infection with this variant. We enrolled individuals who were tested by quantitative nasopharyngeal swab reverse transcription-polymerase chain reaction (RT-PCR) test at a large screening center in a city of Japan during the B.1.1.529 Omicron variant wave between January and May 2022, after contact with COVID-19 patients. Swab tests were planned to be performed approximately 4-5 days after contact. The presence of COVID-19-related symptoms was assessed at the swab test site. Among the 2,507 enrolled individuals, 943 (37.6%) were RT-PCR test-positive and 1,564 (62.4%) were test-negative. Among the 943 PCR test-positive participants, the prevalence of the symptoms was as follows: 47.3% with cough, 32.9% with sore throat, 18.4% with fatigability, 12.7% with fever of ≥ 37.5℃, 9.9% with dyspnea, 2.1% with dysosmia, and 1.4% with dysgeusia. The prevalence of cough, sore throat, dyspnea, and fatigability was higher among adults aged ≥ 18 years than among children and adolescents. The prevalence of dysosmia and dysgeusia remarkably decreased during the Omicron wave (1-3%) compared to during the pre-Omicron variant waves (15-25%). In summary, common COVID-19-related symptoms during the Omicron variant wave included cough and sore throat, followed by fatigability, fever, and dyspnea. The prevalence of most of these symptoms was higher in adults than in non-adults. The prevalence of dysosmia and dysgeusia remarkably decreased with the Omicron variant than with pre-Omicron variants.


Assuntos
COVID-19 , Transtornos do Olfato , Faringite , Adolescente , COVID-19/epidemiologia , Criança , Tosse , Disgeusia , Dispneia , Febre , Humanos , Japão/epidemiologia , SARS-CoV-2
6.
Molecules ; 27(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296527

RESUMO

The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.


Assuntos
Tratamento Farmacológico da COVID-19 , Melatonina , Humanos , SARS-CoV-2 , Melatonina/farmacologia , Melatonina/uso terapêutico , Antioxidantes , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
Biochem Biophys Res Commun ; 574: 14-19, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425281

RESUMO

Following the initial surges of the Alpha (B.1.1.7) and the Beta (B.1.351) variants, a more infectious Delta variant (B.1.617.2) is now surging, further deepening the health crises caused by the pandemic. The sharp rise in cases attributed to the Delta variant has made it especially disturbing and is a variant of concern. Fortunately, current vaccines offer protection against known variants of concern, including the Delta variant. However, the Delta variant has exhibited some ability to dodge the immune system as it is found that neutralizing antibodies from prior infections or vaccines are less receptive to binding with the Delta spike protein. Here, we investigated the structural changes caused by the mutations in the Delta variant's receptor-binding interface and explored the effects on binding with the ACE2 receptor as well as with neutralizing antibodies. We find that the receptor-binding ß-loop-ß motif adopts an altered but stable conformation causing separation in some of the antibody binding epitopes. Our study shows reduced binding of neutralizing antibodies and provides a possible mechanism for the immune evasion exhibited by the Delta variant.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Evasão da Resposta Imune/imunologia , Mutação/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Aminoácidos/genética , Aminoácidos/imunologia , Aminoácidos/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , Sítios de Ligação/imunologia , COVID-19/metabolismo , COVID-19/virologia , Humanos , Evasão da Resposta Imune/genética , Simulação de Dinâmica Molecular , Mutação/genética , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
8.
Pediatr Blood Cancer ; 66(1): e27484, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270496

RESUMO

CD5 antigen expression in B-cell acute lymphoblastic leukemia (B-ALL) is exceptionally rare. There are six detailed case reports in the literature, with only 16 cases described. Case series analyzing the frequency of aberrant B-ALL immunophenotypes suggest that this variant may occur in as little as 2-4.5% of all B-ALL cases, with one series having no CD5+ positive cases. Herein we report a case of CD5+ B-ALL in a 15-year-old female, and review the previously reported cases. As limited information is available, more data from prospective clinical trials are required to determine whether CD5 positivity portends a poorer prognosis.


Assuntos
Antígenos CD5/metabolismo , Recidiva Local de Neoplasia/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Adolescente , Evolução Fatal , Feminino , Humanos , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
9.
Viruses ; 16(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932270

RESUMO

Honey bees (Apis mellifera) play a crucial role in agriculture through their pollination activities. However, they have faced significant health challenges over the past decades that can limit colony performance and even lead to collapse. A primary culprit is the parasitic mite Varroa destructor, known for transmitting harmful bee viruses. Among these viruses is deformed wing virus (DWV), which impacts bee pupae during their development, resulting in either pupal demise or in the emergence of crippled adult bees. In this study, we focused on DWV master variant B. DWV-B prevalence has risen sharply in recent decades and appears to be outcompeting variant A of DWV. We generated a molecular clone of a typical DWV-B strain to compare it with our established DWV-A clone, examining RNA replication, protein expression, and virulence. Initially, we analyzed the genome using RACE-PCR and RT-PCR techniques. Subsequently, we conducted full-genome RT-PCR and inserted the complete viral cDNA into a bacterial plasmid backbone. Phylogenetic comparisons with available full-length sequences were performed, followed by functional analyses using a live bee pupae model. Upon the transfection of in vitro-transcribed RNA, bee pupae exhibited symptoms of DWV infection, with detectable viral protein expression and stable RNA replication observed in subsequent virus passages. The DWV-B clone displayed a lower virulence compared to the DWV-A clone after the transfection of synthetic RNA, as evidenced by a reduced pupal mortality rate of only 20% compared to 80% in the case of DWV-A and a lack of malformations in 50% of the emerging bees. Comparable results were observed in experiments with low infection doses of the passaged virus clones. In these tests, 90% of bees infected with DWV-B showed no clinical symptoms, while 100% of pupae infected with DWV-A died. However, at high infection doses, both DWV-A and DWV-B caused mortality rates exceeding 90%. Taken together, we have generated an authentic virus clone of DWV-B and characterized it in animal experiments.


Assuntos
Genoma Viral , Filogenia , Vírus de RNA , Replicação Viral , Animais , Abelhas/virologia , Vírus de RNA/genética , Vírus de RNA/classificação , Pupa/virologia , Virulência , Varroidae/virologia , RNA Viral/genética
10.
Viruses ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851486

RESUMO

The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells, and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts as to whether TMPRSS2 inhibitors would be suitable for the treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to the spread of SARS-CoV-2 in the infected host is largely unclear. In this study, we show that the loss of TMPRSS2 strongly reduced the replication of the Beta variant in the nose, trachea and lung of C57BL/6 mice, and protected the animals from weight loss and disease. The infection of mice with the Omicron variant did not cause disease, as expected, but again, TMPRSS2 was essential for efficient viral spread in the upper and lower respiratory tract. These results identify the key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection, and highlight TMPRSS2 as an attractive target for antiviral intervention.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Endogâmicos C57BL , Pandemias , Serina Endopeptidases/genética
11.
Vaccines (Basel) ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37112648

RESUMO

Coronaviruses belong to the group of RNA family of viruses that trigger diseases in birds, humans, and mammals, which can cause respiratory tract infections. The COVID-19 pandemic has badly affected every part of the world. Our study aimed to explore the genome of SARS-CoV-2, followed by in silico analysis of its proteins. Different nucleotide and protein variants of SARS-CoV-2 were retrieved from NCBI. Contigs and consensus sequences were developed to identify these variants using SnapGene. Data of the variants that significantly differed from each other was run through Predict Protein software to understand the changes produced in the protein structure. The SOPMA web server was used to predict the secondary structure of the proteins. Tertiary structure details of the selected proteins were analyzed using the web server SWISS-MODEL. Sequencing results showed numerous single nucleotide polymorphisms in the surface glycoprotein, nucleocapsid, ORF1a, and ORF1ab polyprotein while the envelope, membrane, ORF3a, ORF6, ORF7a, ORF8, and ORF10 genes had no or few SNPs. Contigs were used to identify variations in the Alpha and Delta variants of SARS-CoV-2 with the reference strain (Wuhan). Some of the secondary structures of the SARS-CoV-2 proteins were predicted by using Sopma software and were further compared with reference strains of SARS-CoV-2 (Wuhan) proteins. The tertiary structure details of only spike proteins were analyzed through the SWISS-MODEL and Ramachandran plots. Through the Swiss-model, a comparison of the tertiary structure model of the SARS-CoV-2 spike protein of the Alpha and Delta variants was made with the reference strain (Wuhan). Alpha and Delta variants of the SARS-CoV-2 isolates submitted in GISAID from Pakistan with changes in structural and nonstructural proteins were compared with the reference strain, and 3D structure mapping of the spike glycoprotein and mutations in the amino acids were seen. The surprisingly increased rate of SARS-CoV-2 transmission has forced numerous countries to impose a total lockdown due to an unusual occurrence. In this research, we employed in silico computational tools to analyze the SARS-CoV-2 genomes worldwide to detect vital variations in structural proteins and dynamic changes in all SARS-CoV-2 proteins, mainly spike proteins, produced due to many mutations. Our analysis revealed substantial differences in the functionality, immunological, physicochemical, and structural variations in the SARS-CoV-2 isolates. However, the real impact of these SNPs can only be determined further by experiments. Our results can aid in vivo and in vitro experiments in the future.

12.
Infect Disord Drug Targets ; 23(2): e310822208284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36045530

RESUMO

A new COVID-19 variant that no one currently wants has emerged with the start of the new year. Omicron, which was first discovered in November of last year, was only just beginning to be understood when another strain uncovered in France made headlines. On January 4, 2022, news of the variant exploded on social media, but cases of what is now known as variant B.1.640.2 (IHU) were initially discovered about two months prior. Evidence is still being gathered, but internet misinformation regarding the latest coronavirus variety is already rampant, as it was with Omicron. The majority of existing vaccines target SARS-spike CoV-2's protein, which the virus utilizes to enter and infect cells. Epidemiologists and virologists worldwide are concerned about the virus' spike protein, which plays a key role in how your body identifies and reacts to the virus. Spike proteins are produced, recognized, and defended against by our immune system. Your body and the vaccines you have had injected into your system have a far harder time fighting the virus when the amino acids in a protein are altered or removed.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
13.
Expert Rev Vaccines ; 22(1): 90-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36519401

RESUMO

BACKGROUND: We aimed to estimate the public health impact of booster vaccination against COVID-19 in the UK during an Omicron-predominant period. RESEARCH DESIGN AND METHODS: A dynamic transmission model was developed to compare public health outcomes for actual and alternative UK booster vaccination programs. Input sources were publicly available data and targeted literature reviews. Base case analyses estimated outcomes from the UK's Autumn-Winter 2021-2022 booster program during January-March 2022, an Omicron-predominant period. Scenario analyses projected outcomes from Spring and in Autumn 2022 booster programs over an extended time horizon from April 2022-April 2023, assuming continued Omicron predominance, and explored hypothetical program alternatives with modified eligibility criteria and/or increased uptake. RESULTS: Estimates predicted that the Autumn-Winter 2021-2022 booster program averted approximately 12.8 million cases, 1.1 million hospitalizations, and 290,000 deaths. Scenario analyses suggested that Spring and Autumn 2022 programs would avert approximately 6.2 million cases, 716,000 hospitalizations, and 125,000 deaths; alternatives extending eligibility or targeting risk groups would improve these benefits, and increasing uptake would further strengthen impact. CONCLUSIONS: Boosters were estimated to provide substantial benefit to UK public health during Omicron predominance. Benefits of booster vaccination could be maximized by extending eligibility and increasing uptake.


Assuntos
COVID-19 , Saúde Pública , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitalização , Vacinação , Reino Unido/epidemiologia
14.
Cells ; 12(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36899848

RESUMO

Cystatin C, a secreted cysteine protease inhibitor, is abundantly expressed in retinal pigment epithelium (RPE) cells. A mutation in the protein's leader sequence, corresponding to formation of an alternate variant B protein, has been linked with an increased risk for both age-related macular degeneration (AMD) and Alzheimer's disease (AD). Variant B cystatin C displays intracellular mistrafficking with partial mitochondrial association. We hypothesized that variant B cystatin C interacts with mitochondrial proteins and impacts mitochondrial function. We sought to determine how the interactome of the disease-related variant B cystatin C differs from that of the wild-type (WT) form. For this purpose, we expressed cystatin C Halo-tag fusion constructs in RPE cells to pull down proteins interacting with either the WT or variant B form, followed by identification and quantification by mass spectrometry. We identified a total of 28 interacting proteins, of which 8 were exclusively pulled down by variant B cystatin C. These included 18 kDa translocator protein (TSPO) and cytochrome B5 type B, both of which are localized to the mitochondrial outer membrane. Variant B cystatin C expression also affected RPE mitochondrial function with increased membrane potential and susceptibility to damage-induced ROS production. The findings help us to understand how variant B cystatin C differs functionally from the WT form and provide leads to RPE processes adversely affected by the variant B genotype.


Assuntos
Cistatina C , Degeneração Macular , Humanos , Epitélio Pigmentado da Retina/metabolismo , Proteínas Mitocondriais/metabolismo , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , Receptores de GABA/metabolismo
15.
J Med Case Rep ; 17(1): 66, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765433

RESUMO

BACKGROUND: Like other viral infections, severe acute respiratory syndrome coronavirus-2 infection could affect different human body systems, including host immune responses. Three years after its pandemic, we learn more about this novel coronavirus. As we expected, different co-infections with various organisms, such as viruses, bacteria, and even fungi, have been reported. However, concurrent infection with two severe acute respiratory syndrome coronavirus-2 strains and cytomegalovirus is extremely unusual. We have only a rudimentary understanding of such co-infections and their long-term consequences for patients with cancer. CASE PRESENTATION: An 18-year-old young Iranian adult with acute lymphoblastic leukemia presented with abdominal pain, diarrhea, nausea, and vomiting following a recent history of severe acute respiratory syndrome coronavirus-2 infection. The patient never experienced respiratory symptoms, and the chest imaging study was normal on admission. His primary laboratory investigation revealed prerenal azotemia and severe abnormal liver function tests (blood urea nitrogen 32 mg/dL, creatinine 1.75 mg/dL, prothrombin time 66 s, partial thromboplastin time 44.5 s, international normalized ratio 5.14, total bilirubin 2.9 mg/dL, and direct bilirubin 2.59 mg/dL). Cytomegalovirus disease was diagnosed by polymerase chain reaction in his blood and stool samples. The patient's gastrointestinal signs and symptoms improved shortly after receiving intravenous ganciclovir treatment. His gastrointestinal symptoms continued intermittently for weeks despite maintenance valganciclovir prescription, necessitating frequent hospitalizations. The patient was complicated by the recurrence of gastrointestinal symptoms during the sixth hospitalization, even though he had no respiratory symptoms, and the nasopharyngeal test revealed severe acute respiratory syndrome coronavirus-2 Wuhan strain for the first time. Remdesivir and valganciclovir were administrated due to persistent enteritis and evidence of intestinal tissue invasion by severe acute respiratory syndrome coronavirus 2 and cytomegalovirus on multiple intestinal biopsies, which led to partial clinical responses. Cytomegalovirus and severe acute respiratory syndrome coronavirus-2 fecal shedding continued for more than 6 months despite repeated antiviral therapy, and the Wuhan and Alpha strains were also detected in his nasopharyngeal samples through repeated sampling (confirmed by four nasopharyngeal sampling and multiple stool specimens and several intestinal biopsies). Finally, during the Delta-variant (B.1.617.2) outbreak in Iran, the patient was admitted again with febrile neutropenia and decreased level of consciousness, necessitating respiratory support and mechanical ventilation. During the Delta-variant peak, the patient's nasopharyngeal sample once more tested positive for severe acute respiratory syndrome coronavirus 2. The patient died a few days later from cardiopulmonary arrest. CONCLUSION: The coronavirus disease 2019 pandemic has encountered patients with cancer with critical diagnostic and treatment challenges. Patients who are immunocompromised may co-infect with multiple severe acute respiratory syndrome coronavirus-2 strains and cytomegalovirus, and even with timely diagnosis and treatment, the prognosis may be poor.


Assuntos
COVID-19 , Coinfecção , Infecções por Citomegalovirus , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Adulto Jovem , Adolescente , SARS-CoV-2 , Citomegalovirus , Valganciclovir , Irã (Geográfico) , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
16.
East Mediterr Health J ; 29(4): 262-270, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37246437

RESUMO

Background: The B.1.1.7 SARS-CoV-2 variant results in spike gene target failure (SGTF) in reverse transcription-quantitative polymerase chain reaction (RT-PCR) assays. Few studies have been published on the clinical impact of B.1.1.7/SGTF. Aims: To assess the incidence of B.1.1.7/SGTF and its associated clinical characteristics among hospitalized COVID-19 patients. Methods: This observational, single-centre, cohort study was conducted between December 2020 and February 2021 and included 387 hospitalized COVID-19 patients. The Kaplan-Meier method was used for survival analysis, and logistic regression to identify risk factors associated with B.1.1.7/SGTF. Results: By February 2021, B.1.1.7/SGTF (88%) dominated the SARS-CoV-2 PCR results in a Lebanese hospital. Of the 387 eligible COVID-19 patients confirmed by SARS-CoV-2 RT-PCR, 154 (40%) were non-SGTF and 233 (60%) were B.1.1.1.7/SGTF; this was associated with a higher mortality rate among female patients [22/51 (43%) vs 7/37 (19%); P = 0.0170]. Among patients in the B.1.1.7/SGTF group, most were aged ≥ 65 years [162/233 (70%) vs 74/154 (48%); P < 0.0001]. Independent predictors of B.1.1.7/SGTF infection were hypertension (OR = 0.415; CI: 0.242-0.711; P = 0.0010), age ≥ 65 years (OR = 0.379; CI: 0.231-0.622; P < 0.0001), smoking (OR = 1.698; CI: 1.023-2.819; P = 0.0410), and cardiovascular disease (OR = 3.812; CI: 2.215-6.389; P < 0.0001). Only non-SGTF patients experienced multi-organ failure [5/154 (4%) vs 0/233 (0%); P = 0.0096]. Conclusion: There was a clear difference between the clinical features associated with B.1.1.7/SGTF and non-SGTF lineages. Tracking viral evolution and its clinical impact is crucial for proper understanding and management of the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , COVID-19/epidemiologia , Estudos de Coortes , Pandemias , Líbano/epidemiologia
17.
Front Public Health ; 11: 1146059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081954

RESUMO

Background: With the widespread transmission of the Omicron SARS-CoV-2 variant, reinfections have become increasingly common. Here, we explored the role of immunity, primary infection severity, and variant predominance in the risk of reinfection and severe COVID-19 during Omicron predominance in Mexico. Methods: We analyzed reinfections in Mexico in individuals with a primary infection separated by at least 90 days from reinfection using a national surveillance registry of SARS-CoV-2 cases from March 3rd, 2020, to August 13th, 2022. Immunity-generating events included primary infection, partial or complete vaccination, and booster vaccines. Reinfections were matched by age and sex with controls with primary SARS-CoV-2 infection and negative RT-PCR or antigen test at least 90 days after primary infection to explore reinfection and severe disease risk factors. We also compared the protective efficacy of heterologous and homologous vaccine boosters against reinfection. Results: We detected 231,202 SARS-CoV-2 reinfections in Mexico, most occurring in unvaccinated individuals (41.55%). Over 207,623 reinfections occurred during periods of Omicron (89.8%), BA.1 (36.74%), and BA.5 (33.67%) subvariant predominance and a case-fatality rate of 0.22%. Vaccination protected against reinfection, without significant influence of the order of immunity-generating events and provided >90% protection against severe reinfections. Heterologous booster schedules were associated with ~11% and ~ 54% lower risk for reinfection and reinfection-associated severe COVID-19, respectively, modified by time-elapsed since the last immunity-generating event, when compared against complete primary schedules. Conclusion: SARS-CoV-2 reinfections increased during Omicron predominance. Hybrid immunity provides protection against reinfection and associated severe COVID-19, with potential benefit from heterologous booster schedules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Reinfecção/epidemiologia , México/epidemiologia , Imunidade Adaptativa
18.
Ann Med Surg (Lond) ; 78: 103737, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35571678

RESUMO

Despite many nations' best efforts to contain the so-called COVID-19 pandemic, the emergence of the SARS-CoV-2 Omicron strain (B.1.1.529) has been identified as a serious concern. After more than two years of COVID-19 pandemic and more than a year of worldwide vaccination efforts, the globe will not be free of COVID-19 variants such as Delta and Omicron variants. According to current statistics, the Omicron variant has more than 30 mutations when contrasted to other VOCs such as Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). High numbers of changes, particularly in the spike protein (S-Protein), raise worries about the virus's capacity to resist pre-existing immunity acquired by vaccination or spontaneous infection and antibody-based therapy. The Omicron variant raised international concerns, resuming travel bans and coming up with many questions about its severity, transmissibility, testing, detection, and vaccines efficiency against it. Additionally, inadequate health care infrastructures and many immunocompromised individuals increase the infection susceptibility. The current status of low vaccination rates will play a significant role in omicron spreading and create a fertile ground for producing new variants. As a result, this article emphasizes the mutational changes and their consequences. In addition, the potential preventing measures have been examined in detail.

19.
Parasit Vectors ; 15(1): 333, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151583

RESUMO

BACKGROUND: Varroa destructor is the major ectoparasite of the western honey bee (Apis mellifera). Through both its parasitic life-cycle and its role as a vector of viral pathogens, it can cause major damage to honey bee colonies. The deformed wing virus (DWV) is the most common virus transmitted by this ectoparasite, and the mite is correlated to increased viral prevalence and viral loads in infested colonies. DWV variants A and B (DWV-A and DWV-B, respectively) are the two major DWV variants, and they differ both in their virulence and transmission dynamics. METHODS: We studied the transmission of DWV between bees, parasitic mites and their offspring by quantifying DWV loads in bees and mites collected in in vitro and in situ environments. In vitro, we artificially transmitted DWV-A to mites and quantified both DWV-A and DWV-B in mites and bees. In situ, we measured the natural presence of DWV-B in bees, mites and mites' offspring. RESULTS: Bee and mite viral loads were correlated, and mites carrying both variants were associated with higher mortality of the infected host. Mite infestation increased the DWV-B loads and decreased the DWV-A loads in our laboratory conditions. In situ, viral quantification in the mite offspring showed that, after an initially non-infected egg stage, the DWV-B loads were more closely correlated with the foundress (mother) mites than with the bee hosts. CONCLUSIONS: The association between mites and DWV-B was highlighted in this study. The parasitic history of a mite directly impacts its DWV infection potential during the rest of its life-cycle (in terms of variant and viral loads). Regarding the mite's progeny, we hypothesize that the route of contamination is likely through the feeding site rather than by vertical transmission, although further studies are needed to confirm this hypothesis.


Assuntos
Infestações por Ácaros , Vírus de RNA , Varroidae , Animais , Abelhas , Infestações por Ácaros/veterinária , Carga Viral
20.
Am J Transl Res ; 14(6): 3603-3609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836857

RESUMO

SARS-CoV-2 variants have shown increased transmission capabilities and pandemic to an extent with severe presentation and mortality. The delta variant has been declared as an emerging variant of concern (VOC) by the World Health Organization (WHO) on May 10, 2021. This review summarizes the post-vaccination infection events related to SARS-CoV-2 delta variant outbreaks in many areas of China. The characteristics and measures of delta variant-induced COVID-19 infections from May 2021 to October 2021 were reported. We compared the delta variant with the omicron from the latest literature review.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa