Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 609, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684651

RESUMO

Vascularized composite allotransplantation can improve quality of life and restore functionality. However, the complex tissue composition of vascularized composite allografts (VCAs) presents unique clinical challenges that increase the likelihood of transplant rejection. Under prolonged static cold storage, highly damage-susceptible tissues such as muscle and nerve undergo irreversible degradation that may render allografts non-functional. Skin-containing VCA elicits an immunogenic response that increases the risk of recipient allograft rejection. The development of quantitative metrics to evaluate VCAs prior to and following transplantation are key to mitigating allograft rejection. Correspondingly, a broad range of bioanalytical methods have emerged to assess the progression of VCA rejection and characterize transplantation outcomes. To consolidate the current range of relevant technologies and expand on potential for development, methods to evaluate ex vivo VCA status are herein reviewed and comparatively assessed. The use of implantable physiological status monitoring biochips, non-invasive bioimpedance monitoring to assess edema, and deep learning algorithms to fuse disparate inputs to stratify VCAs are identified.


Assuntos
Aloenxertos Compostos , Alotransplante de Tecidos Compostos Vascularizados , Qualidade de Vida , Transplante Homólogo , Algoritmos
2.
J Hand Surg Am ; 45(7): 626-637.e5, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32487366

RESUMO

Over the course of the last 60 years, microsurgical techniques, instrumentation, operating microscopes, and suture materials have all been perfected. Microsurgery training became part of the standard curriculum in plastic, orthopedic, and hand surgery programs. Despite those advances, limb replantation and transplantation are still surgical emergencies owing to limits in composite tissue viability under ischemia. Amputated parts, particularly containing large volumes of muscle, have to be revascularized within 4 hours in order to prevent permanent tissue damage. Static cold storage is the current standard to prolong ischemia time with limited success. Our research for the last 7 years has focused on extending ischemia time prior to revascularization. Our long-term goal is to make replantation and transplantation procedures elective. The following essay is the summary of our efforts.


Assuntos
Extremidades , Reimplante , Criopreservação , Extremidades/cirurgia , Humanos , Isquemia/cirurgia , Microcirurgia
3.
Front Immunol ; 15: 1395945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799435

RESUMO

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells (DCs), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation. By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. Notably, the skin component exhibited heightened immunogenicity when compared to the entire VCA, evidenced by increased frequencies of pan (CD11b-CD11c+), mature (CD11b-CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs and cDC2 subset (CD11b+CD11c+ MHCII+) in the lymphoid tissues and the blood of skin transplant recipients. While donor depletion of cDC and APC reduced frequencies, maturation and activation of DCs in all analyzed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APCs and cDCs mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.


Assuntos
Células Dendríticas , Rejeição de Enxerto , Membro Posterior , Transplante de Pele , Animais , Células Dendríticas/imunologia , Camundongos , Membro Posterior/imunologia , Membro Posterior/transplante , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Aloenxertos Compostos/imunologia , Alotransplante de Tecidos Compostos Vascularizados/métodos , Linfócitos T CD8-Positivos/imunologia , Masculino , Doadores de Tecidos , Pele/imunologia
4.
Bioengineering (Basel) ; 10(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37106621

RESUMO

Vascularized composite allotransplantation addresses injuries to complex anatomical structures such as the face, hand, and abdominal wall. Prolonged static cold storage of vascularized composite allografts (VCA) incurs damage and imposes transportation limits to their viability and availability. Tissue ischemia, the major clinical indication, is strongly correlated with negative transplantation outcomes. Machine perfusion and normothermia can extend preservation times. This perspective introduces multiplexed multi-electrode bioimpedance spectroscopy (MMBIS), an established bioanalytical method to quantify the interaction of the electrical current with tissue components, capable of measuring tissue edema, as a quantitative, noninvasive, real-time, continuous monitoring technique to provide crucially needed assessment of graft preservation efficacy and viability. MMBIS must be developed, and appropriate models explored to address the highly complex multi-tissue structures and time-temperature changes of VCA. Combined with artificial intelligence (AI), MMBIS can serve to stratify allografts for improvement in transplantation outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa