Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 34(1): e2887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37210676

RESUMO

The invasive freshwater mussel Limnoperna fortunei (Dunker, 1857) has spread widely throughout Asia and South America, especially via interbasin water diversion and navigation. The middle route of the South-to-North Water Transfer Project (SNWTP), whose terminal is Beijing, has diverted more than 60 billion m3 of water from the Yangtze River Basin to Northern China since December 2014. L. fortunei has spread north to Beijing along the SNWTP, biofouling its channels and tunnels. To determine the status of L. fortunei's invasion in Beijing, we systematically inspected the water bodies receiving southern water, including all branches of the SNWTP, water treatment plants, lakes, reservoirs, and rivers. We measured the densities of adults and veligers of L. fortunei and conducted eDNA analyses of water samples. A generalized linear model and canonical correspondence analysis were adopted to investigate the correlations between environmental (e.g., water temperature, conductivity, pH, total nitrogen, and phosphorus) and biological (e.g., chlorophyll a, plankton density, and community composition) variables and the densities of adults and veligers of L. fortunei. Water temperature is the most important factor in determining the densities of D-shaped and pediveliger veligers, with explanatory variable contributions of 56.2% and 43.9%, respectively. The pH affects the densities of D-shaped, umbonated, and pediveliger veligers. The density of plantigrade veligers is negatively correlated with the conductivity and positively correlated with the concentration of chlorophyll a. Canonical correspondence analysis shows a weak correlation between the dominant phytoplankton taxa and the density of veligers. The densities of D-shaped, umbonated, and pediveliger veligers are positively correlated with the density of small phytoplankton (12.54 ± 4.33 µm), and the density of plantigrade veligers is positively correlated with the density of large (16.12 ± 5.96 µm) phytoplankton. The density of planktonic veligers is well correlated with local abiotic variables, and that of plantigrade veligers is less correlated with local abiotic variables. This finding implies that controlling early-stage veligers by altering water temperature, pH, and food size might effectively control the establishment of further L. fortunei colonies.


Assuntos
Mytilidae , Animais , Pequim , Clorofila A , Fitoplâncton , China , Lagos
2.
J Invertebr Pathol ; 201: 107994, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741506

RESUMO

Despite undergoing development within a germfree egg capsule, embryos and larvae of the freshwater snail Biomphalaria glabrata possess passive immune protection in the form of parentally-derived antimicrobial proteins in the perivitelline fluid. However, the point at which larvae begin to form their own internal defense system (IDS), which consists of both plasma proteins and hemocytes, is not known. In this study, hemocyte-like cells were observed in mechanically-disrupted late trochophores and veligers of the BS-90 strain of B. glabrata. These cells showed the properties of glass adherence, spreading, motility, and binding and phagocytosing polystyrene microspheres. No hemocyte-like cells were recovered from the early trochophore stage, and therefore their formation first occurs during subsequent maturation. Numbers of hemocyte-like cells increased during larval development. Although the functional significance of these cells is not known, they may represent the initial cellular component of the IDS.


Assuntos
Biomphalaria , Animais , Hemócitos , Schistosoma mansoni/metabolismo , Larva , Caramujos , Água Doce
3.
Org Divers Evol ; 18(1): 101-114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258414

RESUMO

Bivalvia is a taxon of aquatic mollusks that includes clams, oysters, mussels, and scallops. Within heterodont bivalves, Dreissena polymorpha is a small, mytiliform, freshwater mussel that develops indirectly via a planktotrophic veliger larva. Currently, only a few studies on bivalve neurogenesis are available, impeding the reconstruction of a ground pattern in Bivalvia. In order to inject novel data into this discussion, we describe herein the development of the serotonin-like and α-tubulin-like immunoreactive (lir) neuronal components of D. polymorpha from the early trochophore to the late veliger stage. Neurogenesis starts in the early trochophore stage at the apical pole with the appearance of one flask-shaped serotonin-lir cell. When larvae reach the veliger stage, four flask-shaped serotonin-lir cells are present in the apical organ. At the same time, the anlagen of the cerebral ganglia start to form at the base of the apical organ. From the apical organ, one pair of cerebro-visceral connectives projects posteriorly and connects to a posterior larval sensory organ that contains serotonin- and α-tubulin-like flask-shaped cells. Additional, paired serotonin-lir neurites originate from the apical organ and project into the velum. One unpaired stomatogastric serotonin-lir cell develops ventrally to the stomach at the veliger stage. The low number of serotonin-lir cells in the apical organ of bivalve veligers is shared with larvae of basally branching gastropods and scaphopods and is thus considered a feature of the last common ancestor of Conchifera, while the overall simplicity of the larval neural architecture appears to be a specific trait of Bivalvia.

4.
Front Zool ; 11(1): 90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25558273

RESUMO

BACKGROUND: The shipworm Lyrodus pedicellatus is a wood-boring bivalve with an unusual vermiform body. Although its larvae are brooded, they retain the general appearance of a typical bivalve veliger-type larva. Here, we describe myogenesis of L. pedicellatus revealed by filamentous actin labelling and discuss the data in a comparative framework in order to test for homologous structures that might be part of the bivalve (larval) muscular ground pattern. RESULTS: Five major muscle systems were identified: a velum retractor, foot retractor, larval retractor, a distinct mantle musculature and an adductor system. For a short period of larval life, an additional ventral larval retractor is present. Early in development, a velum muscle ring and an oral velum musculature emerge. In late stages the lateral and dorsal mantle musculature, paired finger-shaped muscles, an accessory adductor and a pedal plexus are formed. Similar to other bivalve larvae, L. pedicellatus exhibits three velum retractor muscles, but in contrast to other species, one of them disappears in early stages of L. pedicellatus. The remaining two velum retractors are considerably remodelled during late larval development and are most likely incorporated into the elaborate mantle musculature of the adult. CONCLUSIONS: To our knowledge, this is the first account of any larval retractor system that might contribute to the adult bodyplan of a (conchiferan) mollusk. A comparative analysis shows that a pedal plexus, adductors, a larval velum ring, velum retractors and a ventral larval retractor are commonly found among bivalve larvae, and thus most likely belong to the ground pattern of the bivalve larval musculature.

5.
Ecotoxicol Environ Saf ; 103: 91-100, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24462525

RESUMO

The aim of this study was to determine whether adult exposure to endocrine disrupting compounds affects offspring using trans-generational testing. Adult estuarine dwelling gastropods Nassarius burchardi and Nassarius jonasii were exposed to the synthetic estrogen 17α-ethynylestradiol (EE2) to determine the effects on the development and survival of their offspring. Adults were maintained in synthetic seawater controls and EE2 treatments (0.005, 0.05, 0.5, 50µg/L) over a sixteen week period. Egg capsules were collected from the adults following four, ten and sixteen weeks of adult exposure and transferred to different EE2 exposure scenarios. Treatment concentrations were selected to represent changes in EE2 exposure that could occur over different periods in an organism's lifecycle. Egg capsules laid by adults were therefore transferred to control or EE2 treatments (0.005, 0.05, 0.5, 5, 50, 500µg/L) to develop until hatching. The percentage of egg capsules with unviable eggs and abnormalities, number of days for hatching to occur and hatching success were measured. The veliger larvae that hatched from egg capsules following two, eight and fourteen weeks of adult exposure to EE2 and controls were used in 96h acute toxicity tests with controls and EE2 treatments at concentrations of 0.5, 5, 50, 500, 1250, 2500, 4000µg/L. Exposure of adult N. burchardi and N. jonasii to EE2 affected the percentage of egg capsules with unviable eggs, the development and hatching success of embryos and survival of veligers. These toxicity tests produced a complex set of results with different responses in developing eggs and veliger larvae to the adult EE2 treatments and length of adult exposure. This study demonstrates the importance of trans-generational testing and adult exposure scenarios in toxicity investigations.


Assuntos
Etinilestradiol/toxicidade , Gastrópodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Estágios do Ciclo de Vida/efeitos dos fármacos , Água do Mar , Testes de Toxicidade
6.
Front Neurosci ; 18: 1357873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562306

RESUMO

Introduction: Many marine organisms have a biphasic life cycle that transitions between a swimming larva with a more sedentary adult form. At the end of the first phase, larvae must identify suitable sites to settle and undergo a dramatic morphological change. Environmental factors, including photic and chemical cues, appear to influence settlement, but the sensory receptors involved are largely unknown. We targeted the protein receptor, opsin, which belongs to large superfamily of transmembrane receptors that detects environmental stimuli, hormones, and neurotransmitters. While opsins are well-known for light-sensing, including vision, a growing number of studies have demonstrated light-independent functions. We therefore examined opsin expression in the Pteriomorphia, a large, diverse clade of marine bivalves, that includes commercially important species, such as oysters, mussels, and scallops. Methods: Genomic annotations combined with phylogenetic analysis show great variation of opsin abundance among pteriomorphian bivalves, including surprisingly high genomic abundance in many species that are eyeless as adults, such as mussels. Therefore, we investigated the diversity of opsin expression from the perspective of larval development. We collected opsin gene expression in four families of Pteriomorphia, across three distinct larval stages, i.e., trochophore, veliger, and pediveliger, and compared those to adult tissues. Results: We found larvae express all opsin types in these bivalves, but opsin expression patterns are largely species-specific across development. Few opsins are expressed in the adult mantle, but many are highly expressed in adult eyes. Intriguingly, opsin genes such as retinochrome, xenopsins, and Go-opsins have higher levels of expression in the later larval stages when substrates for settlement are being tested, such as the pediveliger. Conclusion: Investigating opsin gene expression during larval development provides crucial insights into their intricate interactions with the surroundings, which may shed light on how opsin receptors of these organisms respond to various environmental cues that play a pivotal role in their settlement process.

7.
Front Neurosci ; 18: 1346610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638695

RESUMO

Introduction: The remarkable diversity observed in the structure and development of the molluscan nervous system raises intriguing questions regarding the molecular mechanisms underlying neurogenesis in Mollusca. The expression of SoxB family transcription factors plays a pivotal role in neuronal development, thereby offering valuable insights into the strategies of neurogenesis. Methods: In this study, we conducted gene expression analysis focusing on SoxB-family transcription factors during early neurogenesis in the gastropod Lymnaea stagnalis. We employed a combination of hybridization chain reaction in situ hybridization (HCR-ISH), immunocytochemistry, confocal microscopy, and cell proliferation assays to investigate the spatial and temporal expression patterns of LsSoxB1 and LsSoxB2 from the gastrula stage to hatching, with particular attention to the formation of central ring ganglia. Results: Our investigation reveals that LsSoxB1 demonstrates expanded ectodermal expression from the gastrula to the hatching stage, whereas expression of LsSoxB2 in the ectoderm ceases by the veliger stage. LsSoxB1 is expressed in the ectoderm of the head, foot, and visceral complex, as well as in forming ganglia and sensory cells. Conversely, LsSoxB2 is mostly restricted to the subepithelial layer and forming ganglia cells during metamorphosis. Proliferation assays indicate a uniform distribution of dividing cells in the ectoderm across all developmental stages, suggesting the absence of distinct neurogenic zones with increased proliferation in gastropods. Discussion: Our findings reveal a spatially and temporally extended pattern of SoxB1 expression in a gastropod representative compared to other lophotrochozoan species. This prolonged and widespread expression of SoxB genes may be interpreted as a form of transcriptional neoteny, representing a preadaptation to prolonged neurogenesis. Consequently, it could contribute to the diversification of nervous systems in gastropods and lead to an increase in the complexity of the central nervous system in Mollusca.

8.
Sci Total Environ ; 789: 147988, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34323817

RESUMO

Metal contamination within the urbanized coastal zon is one threat linked to a decline in the abundance, distribution and/or species diversity of wild marine bivalve populations. This study determined the 48-h embryo/larval sensitivity (no-effect concentration (NEC) and median-effect concentration (EC50)) of ten marine bivalve species (nine endemic to Australia) to aluminium (Al), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni) and zinc (Zn), key metal contaminants impacting urbanized coastal zones in south-eastern Australia, in natural seawater (20-22 °C, 30‰ salinity, pH 7.8-7.9, 1.2 mg/L dissolved organic carbon). For all metals, except Fe, the order of sensitivity was oysters > mussels ≥ scallops ≥ cockles ≥ clams, where the economically-important oysters, Magallana gigas and Saccostrea glomerata, were 2.6 (Al) to 4.2 (Cd) times more sensitive than the least sensitive clam species. For all bivalve species, the order of metal sensitivity was Cu > Pb > Zn = Ni > Co > Cd > Al > Cr(VI) > Mn ≥ Fe(III), where Cu was eight times more toxic than Zn or Ni, 28 times more toxic than Cd, 220 times more toxic than Cr(VI) and 570 times more toxic than Fe(III). Iron, unlike the other nine soluble metals, occurred as particulate Fe(III) oxyhydroxide, where EC50 values decreased with increasing exposure time as the larval (D-veliger) stage. There was no significant (p > 0.05) effect of embryo/larval mass, or surface area/volume, on metal sensitivity. Further, there was no significant (p > 0.05) relationship between metal sensitivity and phylogeny (genetic distance). Divalent metal sensitivity was positively related (r2 = 0.87) to cell surface metal-binding affinity. The current Australian marine water quality guideline for Ni is not protective of the ten bivalve species (NECs were 2-6-fold below the guideline), while the guideline for Zn is not protective of oysters.

9.
Dev Neurobiol ; 78(7): 736-753, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663674

RESUMO

The marine mud snail, Tritia (=Ilyanassa) obsoleta, displays a biphasic life cycle. During the initial phase of early development, embryos hatch from benthic egg capsules to become weakly swimming veliger larvae. In the second phase, adult T. obsoleta are facultative carnivores and major agents of community disturbance. Metamorphosis is the irreversible developmental event that links these two life history stages. When physiologically competent, larvae can respond to appropriate environmental cues by settling onto their mudflat habitat and transforming themselves into miniature adult snails. Two neurotransmitters-serotonin and nitric oxide-have opposing effects on the metamorphic process in this species. In multiple other species of gastropod and bivalve molluscs, a third neurotransmitter, the classically inhibitory compound γ-aminobutyric acid (GABA), can induce settlement or metamorphosis upon external application to competent larvae. In this situation, GABA is presumed to mimic the action of ligands from the juvenile environment that bind to larval chemosensory receptors and activate the metamorphic pathway. Results of our experiments contradict this commonly reported action of GABA on molluscan larvae. External application of GABA to competent larvae of T. obsoleta elicited no response, but instead attenuated the action of serotonin (5-HT), a metamorphic inducer. Our investigations into the responses of larval T. obsoleta to multiple GABAergic reagents support our hypothesis that GABA functions internally as a neurotransmitter in the pathway that controls the initiation of metamorphosis. Our results also suggest that GABA acts directly on or downstream from serotonergic neurons to regulate the metamorphosis-inducing effects of this neurotransmitter. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 736-753, 2018.


Assuntos
Metamorfose Biológica/fisiologia , Caramujos/crescimento & desenvolvimento , Caramujos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido Amino-Oxiacético/farmacologia , Animais , Ânions/metabolismo , Bicuculina/farmacologia , Cloretos/metabolismo , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Muscimol/farmacologia , Neurotransmissores/farmacologia , Piridazinas/farmacologia , Receptores de GABA-A/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Caramujos/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
10.
Environ Pollut ; 233: 588-595, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29107898

RESUMO

Microplastics exposure could be detrimental to marine organisms especially under high concentrations. However, few studies have considered the multiphasic nature of marine invertebrates' life history and investigated the impact of experiencing microplastics during early development on post-metamorphic stages (legacy effect). Many planktonic larvae can feed selectively and it is unclear whether such selectivity could modulate the impact of algal food-sized microplastic. In this two-stage experiment, veligers of Crepidula onyx were first exposed to additions of algae-sized micro-polystyrene (micro-PS) beads at different concentrations, including ones that were comparable their algal diet. These additions were then either halted or continued after settlement. At environmentally relevant concentration (ten 2-µm microplastic beads ml-1), larval and juvenile C. onyx was not affected. At higher concentrations, these micro-PS fed larvae consumed a similar amount of algae compared to those in control but grew relatively slower than those in the control suggesting that ingestion and/or removal of microplastic was/were energetically costly. These larvae also settled earlier at a smaller size compared to the control, which could negatively affect post-settlement success. Juvenile C. onyx receiving continuous micro-PS addition had slower growth rates. Individuals only exposed to micro-PS during their larval stage continued to have slower growth rates than those in the control even if micro-PS had been absent in their surroundings for 65 days highlighting a legacy effect of microplastic exposure.


Assuntos
Gastrópodes/crescimento & desenvolvimento , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Larva/efeitos dos fármacos , Poliestirenos/toxicidade
11.
Mar Pollut Bull ; 126: 363-371, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29421113

RESUMO

This study described the occurrence of abnormalities in bivalve larvae from the Puck Bay. Analyses of plankton samples collected in 2012-2013 showed that larval Mytilus trossulus, Mya arenaria, and Cerastoderma glaucum exhibited abnormalities that could indicate adverse environmental impacts. The deformities were mainly in shells, but missing soft tissue fragments and protruding vela were also noted. In addition to larval studies, we analyzed benthic postlarvae of Mytilus trossulus. Interestingly, grooves and notches at different locations of the prodissoconch, dissoconch, and shell margin were observed. Some of these deformations were reminiscent of the indentations found on the shell edge of larvae. Comparing the proportion of abnormal postlarvae to larvae with shell abnormalities suggested that the survival of larvae with shell abnormalities was low. Overall, our results suggested that the ratio of abnormal bivalve larvae could be used as an indicator of the biological effects of hazardous substances in the pelagic environment.


Assuntos
Exoesqueleto/anormalidades , Bivalves , Monitoramento Ambiental/métodos , Larva , Animais , Países Bálticos , Baías , Poluição Ambiental , Substâncias Perigosas
12.
Dev Reprod ; 18(1): 25-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25949168

RESUMO

This study was investigated spawning behavior, structure of egg masses and egg development in Aplysia kurodai inhabiting the coastal waters of Jeju Island, Korea. The mating and courtship behavior of A. kurodai occurred in the form of unilateral copulating with chain formation. In chain copulation, only the first animal acted as a female; the second and succeeding animals acted as males (sperm donors) to the animals in front and as females to the animals behind. The fertilized eggs were packaged in capsules that are embedded in jelly to form a cylindrical string called an egg masses. The number of capsule per cm of the egg masses was 55 to 60 capsules and each capsule within the egg masses held 15 to 25 eggs. After spawning, the egg masses were bright yellow or orange in color. This egg masses color not changed until embryos developed into trochophore stage. Thereafter, as embryo developed from trochophore stage to veliger stage the egg masses color became brownish. The fertilized eggs were spherical, with a diameter of approximately 80±1 µm at spawning. At 5 to 6 days after spawning, the embryo developed into trochophore stage and began to rotate within the egg capsule. In the trochophore stage, the precursor of the velum, called the prototroch or prevelum, developed. At 10 days after spawning, the prevelum is transformed into the velum, and the trochophore developed into veliger stage. Between 10 to 15 days after spawning, the veligers broke out of the egg capsule, and hatched as free-swimming larvae.

13.
Harmful Algae ; 7(5): 567-573, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28729816

RESUMO

Laboratory grazing experiments compared ingestion of two subclones of the dinoflagellate Alexandrium lusitanicum by gastropod veliger larvae (Nassarius sp.). While the two prey subclones originated from the same monoclonal isolate of A. lusitanicum, one possessed the ability to produce paralytic-shellfish-poisoning toxins (PSTs), while the other did not. Ingestion rates on the two Alexandrium subclones were not significantly different over a range of prey concentrations (approximately 100 - 660 cells ml-1), indicating that PSTs did not serve as a grazing deterrent for these larvae. However, ingestion rates on both subclones were low at the higher prey concentrations tested. Mortality of the predators also increased linearly with concentration of either subclone. These observations indicated that both A. lusitanicum subclones produced an unknown substance that inhibited and killed the grazers. Veliger mortality was not induced by culture filtrates or lysates, suggesting either that the substance was either highly labile or that contact with intact cells was required. Because toxic algae can produce multiple bioactive substances, experimental demonstrations of alleopathic effects of toxic species should not be assigned to known toxins without supporting evidence. In addition, the results show that the effectiveness of algal grazing deterrents can increase with cell concentration, which may have implications for bloom dynamics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa