Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Physiol ; 601(1): 51-67, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426548

RESUMO

At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We tested the hypothesis that in single rabbit ventricular myocytes pharmacological modulation of SK channels plays a causative role for the development of pacing-induced CaT and AP duration (APD) alternans. SK channel blockers (apamin, UCL1684) had only a minor effect on AP repolarization. However, SK channel activation by NS309 resulted in significant APD shortening, demonstrating that functional SK channels are well expressed in ventricular myocytes. The effects of NS309 were prevented or reversed by apamin and UCL1684, indicating that NS309 acted on SK channels. SK channel activation abolished or reduced the degree of pacing-induced CaT and APD alternans. Inhibition of KV 7.1 (with HMR1556) and KV 11.1 (with E4031) channels was used to mimic conditions of long QT syndromes type-1 and type-2, respectively. Both HMR1556 and E4031 enhanced CaT alternans that was prevented by SK channel activation. In AP voltage-clamped cells the SK channel activator had no effect on CaT alternans, confirming that suppression of CaT alternans was caused by APD shortening. APD shortening contributed to protection from alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest that SK activation could be a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy for patients with long QT syndrome. KEY POINTS: At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and intracellular Ca2+ release amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+ -activated K+ (SK) channels in ventricles are poorly understood. We investigated whether pharmacological modulation of SK channels affects the development of cardiac alternans in normal ventricular cells and in cells with drug-induced long QT syndrome (LQTS). While SK channel blockers have only a minor effect on AP morphology, their activation leads to AP shortening and abolishes or reduces the degree of pacing-induced Ca2+ and AP alternans. AP shortening contributed to protection against alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest SK activation as a potential intervention to avert the development of alternans with important ramifications for arrhythmia prevention for patients with LQTS.


Assuntos
Arritmias Cardíacas , Síndrome do QT Longo , Animais , Coelhos , Potenciais de Ação/fisiologia , Apamina/farmacologia , Miócitos Cardíacos/fisiologia , Doença do Sistema de Condução Cardíaco
2.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895058

RESUMO

Although repolarization has been suggested to propagate in cardiac tissue both theoretically and experimentally, it has been challenging to estimate how and to what extent the propagation of repolarization contributes to relaxation because repolarization only occurs in the course of membrane excitation in normal hearts. We established a mathematical model of a 1D strand of 600 myocytes stabilized at an equilibrium potential near the plateau potential level by introducing a sustained component of the late sodium current (INaL). By applying a hyperpolarizing stimulus to a small part of the strand, we succeeded in inducing repolarization which propagated along the strand at a velocity of 1~2 cm/s. The ionic mechanisms responsible for repolarization at the myocyte level, i.e., the deactivation of both the INaL and the L-type calcium current (ICaL), and the activation of the rapid component of delayed rectifier potassium current (IKr) and the inward rectifier potassium channel (IK1), were found to be important for the propagation of repolarization in the myocyte strand. Using an analogy with progressive activation of the sodium current (INa) in the propagation of excitation, regenerative activation of the predominant magnitude of IK1 makes the myocytes at the wave front start repolarization in succession through the electrical coupling via gap junction channels.


Assuntos
Ventrículos do Coração , Miócitos Cardíacos , Humanos , Potenciais de Ação/fisiologia , Miócitos Cardíacos/fisiologia , Modelos Teóricos , Sódio
3.
J Physiol ; 600(15): 3497-3516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737959

RESUMO

The force-pCa (F-pCa) curve is used to characterize steady-state contractile properties of cardiac muscle cells in different physiological, pathological and pharmacological conditions. This provides a reduced preparation in which to isolate sarcomere mechanisms. However, it is unclear how changes in the F-pCa curve impact emergent whole-heart mechanics quantitatively. We study the link between sarcomere and whole-heart function using a multiscale mathematical model of rat biventricular mechanics that describes sarcomere, tissue, anatomy, preload and afterload properties quantitatively. We first map individual cell-level changes in sarcomere-regulating parameters to organ-level changes in the left ventricular function described by pressure-volume loop characteristics (e.g. end-diastolic and end-systolic volumes, ejection fraction and isovolumetric relaxation time). We next map changes in the sarcomere-regulating parameters to changes in the F-pCa curve. We demonstrate that a change in the F-pCa curve can be caused by multiple different changes in sarcomere properties. We demonstrate that changes in sarcomere properties cause non-linear and, importantly, non-monotonic changes in left ventricular function. As a result, a change in sarcomere properties yielding changes in the F-pCa curve that improve contractility does not guarantee an improvement in whole-heart function. Likewise, a desired change in whole-heart function (i.e. ejection fraction or relaxation time) is not caused by a unique shift in the F-pCa curve. Changes in the F-pCa curve alone cannot be used to predict the impact of a compound on whole-heart function. KEY POINTS: The force-pCa (F-pCa) curve is used to assess myofilament calcium sensitivity after pharmacological modulation and to infer pharmacological effects on whole-heart function. We demonstrate that there is a non-unique mapping from changes in F-pCa curves to changes in left ventricular (LV) function. The effect of changes in F-pCa on LV function depend on the state of the heart and could be different for different pathological conditions. Screening of compounds to impact whole-heart function by F-pCa should be combined with active tension and calcium transient measurements to predict better how changes in muscle function will impact whole-heart physiology.


Assuntos
Cálcio , Contração Miocárdica , Animais , Contração Miocárdica/fisiologia , Miócitos Cardíacos , Miofibrilas , Ratos , Sarcômeros/fisiologia
4.
Curr Top Membr ; 89: 63-74, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210152

RESUMO

Transient Receptor Potential Vanilloid 4 (TRPV4) is expressed in numerous cell types within the heart, yet the expression levels, subcellular localization, and functional relevance of TRPV4 in cardiac myocytes is under-appreciated. Recent data indicate a critical role of TRPV4 in both atrial and ventricular myocyte biology, with expression levels and channel function increasing following pathological scenarios including ischemia, myocardial infarction, mechanical stress, and inflammation. Excessive activation of TRPV4 at the cellular level contributes to enhanced Ca2+ entry which predisposes the cardiac myocyte to pro-arrhythmic Ca2+ overload and electrophysiological abnormalities. At the organ level, excessive TRPV4 activity associates with cardiac hypercontractility, cardiac damage, ventricular arrhythmia, and atrial fibrillation. This manuscript chapter describes the emerging literature on TRPV4 in cardiac myocytes in physiology and disease.


Assuntos
Infarto do Miocárdio , Canais de Potencial de Receptor Transitório , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
5.
J Mol Cell Cardiol ; 139: 113-123, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31982426

RESUMO

Transient receptor potential canonical 1 (TRPC1) protein is abundantly expressed in cardiomyocytes. While TRPC1 is supposed to be critically involved in cardiac hypertrophy, its physiological role in cardiomyocytes is poorly understood. We investigated the subcellular location of TRPC1 and its contribution to Ca2+ signaling in mammalian ventricular myocytes. Immunolabeling, three-dimensional scanning confocal microscopy and quantitative colocalization analysis revealed an abundant intracellular location of TRPC1 in neonatal rat ventricular myocytes (NRVMs) and adult rabbit ventricular myocytes. TRPC1 was colocalized with intracellular proteins including sarco/endoplasmic reticulum Ca2+ ATPase 2 in the sarcoplasmic reticulum (SR). Colocalization with wheat germ agglutinin, which labels the glycocalyx and thus marks the sarcolemma including the transverse tubular system, was low. Super-resolution and immunoelectron microscopy supported the intracellular location of TRPC1. We investigated Ca2+ signaling in NRVMs after adenoviral TRPC1 overexpression or silencing. In NRVMs bathed in Na+ and Ca2+ free solution, TRPC1 overexpression and silencing was associated with a decreased and increased SR Ca2+ content, respectively. In isolated rabbit cardiomyocytes bathed in Na+ and Ca2+ free solution, we found an increased decay of the cytosolic Ca2+ concentration [Ca2+]i and increased SR Ca2+ content in the presence of the TRPC channel blocker SKF-96365. In a computational model of rabbit ventricular myocytes at physiological pacing rates, Ca2+ leak through SR TRPC channels increased the systolic and diastolic [Ca2+]i with only minor effects on the action potential and SR Ca2+ content. Our studies suggest that TRPC1 channels are localized in the SR, and not present in the sarcolemma of ventricular myocytes. The studies provide evidence for a role of TRPC1 as a contributor to SR Ca2+ leak in cardiomyocytes, which was previously explained by ryanodine receptors only. We propose that the findings will guide us to an understanding of TRPC1 channels as modulators of [Ca2+]i and contractility in cardiomyocytes.


Assuntos
Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Biológicos , Miócitos Cardíacos/ultraestrutura , Coelhos , Ratos , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Canais de Cátion TRPC/ultraestrutura
6.
Pflugers Arch ; 472(11): 1643-1654, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32656734

RESUMO

Fatty acid (FA)-dependent mitochondrial activities of atrial myocardium in hypertension (HTN) and its regulation by nitric oxide (NO) remain unidentified. Here, we have studied palmitic acid (PA) regulation of cardiac mitochondrial oxygen consumption rate (OCR) in left atrial (LA) myocardium of sham and angiotensin II-induced HTN rats and their regulations by endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS). The effects were compared with those of left ventricular (LV) myocytes. Our results showed that OCR was greater in HTN-LA compared with that in sham-LA. PA increased OCR in sham-LA, sham-LV, and HTN-LV but reduced it in HTN-LA. Inhibition of nNOS (S-methyl-L-thiocitrulline, SMTC) or eNOS/nNOS (Nω-nitro-L-arginine methyl ester hydrochloride, L-NAME) reduced PA increment of OCR in sham-LA but exerted no effect on OCR in HTN-LA. SMTC reduced OCR in HTN-LV and L-NAME reduced OCR in sham-LV. nNOS was the predominant source of NO in LA and LV. nNOS-derived NO was increased in HTN-LA and HTN-LV. PA reduced eNOSSer1177, nNOSSer1417, and NO level in HTN-LA but exerted no effect in sham-LA. In contrast, PA increased NO in HTN-LV and enhanced nNOSSer1417 but reduced NO level in sham-LV without affecting eNOSSer1177, eNOSThr495, or nNOSSer1417. 2-Bromopalmitate (2BP), which blocks the S-palmitoylation of target proteins, prevented PA-dependent decrease of nNOSSer1417 and OCR in HTN-LA. In HTN-LV, 2BP prevented PA-induced OCR without affecting nNOSSer1417. Our results reveal that FA-induced mitochondrial activity in atrial myocardium is impaired in HTN which is mediated by reduced nNOS activity and NO bioavailability. Metabolic dysregulation may underlie diastolic dysfunction of atrial myocardium in HTN.


Assuntos
Átrios do Coração/metabolismo , Hipertensão/metabolismo , Mitocôndrias Cardíacas/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Oxigênio/metabolismo , Ácido Palmítico/metabolismo , Animais , Respiração Celular , Células Cultivadas , Átrios do Coração/citologia , Masculino , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/genética , Ratos , Ratos Sprague-Dawley
7.
Biochem Biophys Res Commun ; 527(2): 379-386, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32321644

RESUMO

Although cultured adult cardiac myocytes in combination with cell-level genetic modifications have been adopted for the study of protein function, the cellular alterations caused by the culture conditions themselves need to be clarified before we can interpret the effects of genetically altered proteins. We systematically compared the cellular morphology, global Ca2+ signaling, elementary Ca2+ release (sparks), and arrangement of ryanodine receptor (RyR) clusters in short-term (2 days)-cultured adult rat ventricular myocytes with those of freshly isolated myocytes. The transverse (t)-tubules were remarkably decreased (to ∼25%) by culture, and whole-cell capacitance was reduced by ∼35%. The magnitude of depolarization-induced Ca2+ transients decreased to ∼50%, and Ca2+ transient decay was slowed by culture. The culture did not affect sarcoplasmic reticulum (SR) Ca2+ loading. Therefore, fractional Ca2+ release was attenuated by culture. In the cultured cells, the L-type Ca2+ current (ICa) was smaller (∼50% of controls) and its inactivation was slower. In cultured myocytes, there were significantly fewer (∼50% of control) Ca2+ sparks, the local Ca2+ releases through RyR clusters, compared with in freshly isolated cells. Amplitude and kinetics (duration and time-to-peak) of individual sparks were similar, but they showed greater width in cultured cells. Immunolocalization analysis revealed that the cross-striation of RyRs distribution became weaker and less organized, and that the density of RyR clusters decreased in cultured myocytes. Our data suggest that the loss of t-tubules and generation of compromised Ca2+ transients and ICa in short-term adult ventricular cell culture are independent of SR Ca2+ loading status. In addition, the deteriorated arrangement of the RyR-clusters and their decreased density after short-term culture may be partly responsible for fewer Ca2+ sparks and a decrease in global Ca2+ release.


Assuntos
Sinalização do Cálcio , Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Células Cultivadas , Ventrículos do Coração/metabolismo , Masculino , Miócitos Cardíacos/citologia , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190336, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448062

RESUMO

Cardiac myocytes transduce changes in mechanical loading into cellular responses via interacting cell signalling pathways. We previously reported a logic-based ordinary differential equation model of the myocyte mechanosignalling network that correctly predicts 78% of independent experimental results not used to formulate the original model. Here, we use Monte Carlo and polynomial chaos expansion simulations to examine the effects of uncertainty in parameter values, model logic and experimental validation data on the assessed accuracy of that model. The prediction accuracy of the model was robust to parameter changes over a wide range being least sensitive to uncertainty in time constants and most affected by uncertainty in reaction weights. Quantifying epistemic uncertainty in the reaction logic of the model showed that while replacing 'OR' with 'AND' reactions greatly reduced model accuracy, replacing 'AND' with 'OR' reactions was more likely to maintain or even improve accuracy. Finally, data uncertainty had a modest effect on assessment of model accuracy. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Mecanotransdução Celular , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Incerteza
9.
Biomed Eng Online ; 18(1): 72, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174533

RESUMO

PURPOSE: Although the quantitative analysis of electromechanical alternans is important, previous studies have focused on electrical alternans, and there is a lack quantitative analysis of mechanical alternans at the subcellular level according to various basic cycle lengths (BCLs). Therefore, we used the excitation-contraction (E-C) coupling model of human ventricular cells to quantitatively analyze the mechanical alternans of ventricular cells according to various BCLs. METHODS: To implement E-C coupling, we used calcium transient data, which is the output data of electrical simulation using the electrophysiological model of human ventricular myocytes, as the input data of mechanical simulation using the contractile myofilament dynamics model. Moreover, we applied various loads on ventricular cells for implementation of isotonic and isometric contraction. RESULTS: As the BCL was reduced from 1000 to 200 ms at 30 ms increments, mechanical alternans, as well as electrical alternans, were observed. At this time, the myocardial diastolic tension increased, and the contractile ATP consumption rate remained greater than zero even in the resting state. Furthermore, the time of peak tension, equivalent cell length, and contractile ATP consumption rate were all reduced. There are two tendencies that endocardial, mid-myocardial, and epicardial cells have the maximum amplitude of tension and the peak systolic tension begins to appear at a high rate under the isometric condition at a particular BCL. CONCLUSIONS: We observed mechanical alternans of ventricular myocytes as well as electrical alternans, and identified unstable conditions associated with mechanical alternans. We also determined the amount of BCL given to each ventricular cell to generate stable and high tension state in the case of isometric contraction.


Assuntos
Fenômenos Eletrofisiológicos , Ventrículos do Coração/citologia , Fenômenos Mecânicos , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Função Ventricular , Fenômenos Biomecânicos , Eletrocardiografia , Humanos
10.
Ann Noninvasive Electrocardiol ; 24(4): e12647, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30896072

RESUMO

INTRODUCTION: Successful initiation of spiral wave reentry in the neonatal rat ventricular myocyte (NRVM) monolayer implicitly assumes the presence of spatial dispersion of repolarization (DR), which is difficult to quantify. We recently introduced a NRVM monolayer that utilizes anthopleurin-A to impart a prolonged plateau to the NRVM action potential. This was associated with a significant degree of spatial DR that lends itself to accurate quantification. METHODS AND RESULTS: We utilized the monolayer and fluorescence optical mapping of intracellular calcium transients (FCai ) to systematically study and compare the contribution of spatial dispersion of the duration of FCai (as a surrogate of DR) to induction of spiral wave reentry around a functional core versus reentry around a fixed anatomical obstacle. We show that functional reentry could be initiated by a premature stimulus acting on a substrate of spatial DR resulting in a functional line of propagation block. Subsequent wave fronts circulated around a central core of functional obstacle created by sustained depolarization from the circulating wave front. Both initiation and termination of spiral wave reentry around an anatomical obstacle consistently required participation of a region of functional propagation block. This region was similarly based on spatial DR. Spontaneous termination of spiral wave reentry also resulted from block in the functional component of the circuit obstacle, usually preceded by beat-to-beat slowing of propagation. CONCLUSIONS: The study demonstrates the critical contribution of DR to spiral wave reentry around a purely functional core as well as reentry around a fixed anatomical core.


Assuntos
Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Fluorescência , Peptídeos e Proteínas de Sinalização Intercelular , Modelos Animais , Ratos , Ratos Sprague-Dawley , Imagens com Corantes Sensíveis à Voltagem/métodos
11.
Apoptosis ; 23(9-10): 459-469, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30117075

RESUMO

Autophagy is a recycling process that degrades damaged or unneeded cellular components for renewal. Accumulating evidence suggests that dysregulation of autophagy is involved in pulmonary hypertension (PH). PH is a progressive disease characterized by persistent proliferation of apoptosis-resistant pulmonary vascular cells. However, reports on the role of autophagy in the development of PH are often conflicting. In this review, we discuss recent development in the field with emphasis on pulmonary arterial endothelial cells, pulmonary smooth muscle cells, right ventricular myocyte, as well as pharmacological strategies targeting the autophagic signaling pathway.


Assuntos
Apoptose/genética , Autofagia/genética , Hipóxia Celular/genética , Hipertensão Pulmonar/genética , Proliferação de Células/genética , Humanos , Hipertensão Pulmonar/fisiopatologia , Pulmão/metabolismo , Pulmão/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia
12.
Am J Physiol Cell Physiol ; 312(4): C478-C486, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122728

RESUMO

Little is known regarding the role of suppressor of cytokine signaling (SOCS) in the control of cytokine signaling in cardiomyocytes. We investigated the consequences of SOCS2 ablation for leukemia inhibitory factor (LIF)-induced enhancement of intracellular Ca2+ ([Ca2+]i) transient by performing experiments with cardiomyocytes from SOCS2-knockout (ko) mice. Similar levels of SOCS3 transcripts were seen in cardiomyocytes from wild-type and SOCS2-ko mice, while SOCS1 mRNA was reduced in SOCS2-ko. Immunoprecipitation experiments showed increased SOCS3 association with gp130 receptor in SOCS2-ko myocytes. Measurements of Ca2+ in wild-type myocytes exposed to LIF showed a significant increase in the magnitude of the Ca2+ transient. This change was absent in LIF-treated SOCS2-ko cells. LIF activation of ERK and STAT3 was observed in both wild-type and SOCS2-ko cells, indicating that in SOCS2-ko, LIF receptors were functional, despite the lack of effect in the Ca2+ transient. In wild-type cells, LIF-induced increase in [Ca2+]i and phospholamban Thr17 [PLN(Thr17)] phosphorylation was inhibited by KN-93, indicating a role for CaMKII in LIF-induced Ca2+ raise. LIF-induced phosphorylation of PLN(Thr17) was abrogated in SOCS2-ko myocytes. In wild-type cardiomyocytes, LIF treatment increased L-type Ca2+ current (ICa,L), a key activator of CaMKII in response to LIF. Conversely, SOCS2-ko myocytes failed to activate ICa,L in response to LIF, providing a rationale for the lack of LIF effect on Ca2+ transient. Our data show that absence of SOCS2 turns cardiomyocytes unresponsive to LIF-induced [Ca2+] raise, indicating that endogenous levels of SOCS2 are crucial for full activation of LIF signaling in the heart.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Fator Inibidor de Leucemia/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Supressoras da Sinalização de Citocina/genética
13.
J Physiol ; 595(12): 3721-3742, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28502095

RESUMO

KEY POINTS: Heart size increases with age (called hypertrophy), and its ability to contract declines. However, these reflect average changes that may not be present, or present to the same extent, in all older individuals. That aging happens at different rates is well accepted clinically. People who are aging rapidly are frail and frailty is measured with a 'frailty index'. We quantified frailty with a validated mouse frailty index tool and evaluated the impacts of age and frailty on cardiac hypertrophy and contractile dysfunction. Hypertrophy increased with age, while contractions, calcium currents and calcium transients declined; these changes were graded by frailty scores. Overall health status, quantified as frailty, may promote maladaptive changes associated with cardiac aging and facilitate the development of diseases such as heart failure. To understand age-related changes in heart structure and function, it is essential to know both chronological age and the health status of the animal. ABSTRACT: On average, cardiac hypertrophy and contractile dysfunction increase with age. Still, individuals age at different rates and their health status varies from fit to frail. We investigated the influence of frailty on age-dependent ventricular remodelling. Frailty was quantified as deficit accumulation in adult (≈7 months) and aged (≈27 months) C57BL/6J mice by adapting a validated frailty index (FI) tool. Hypertrophy and contractile function were evaluated in Langendorff-perfused hearts; cellular correlates/mechanisms were investigated in ventricular myocytes. FI scores increased with age. Mean cardiac hypertrophy increased with age, but values in the adult and aged groups overlapped. When plotted as a function of frailty, hypertrophy was graded by FI score (r = 0.67-0.55, P < 0.0003). Myocyte area also correlated positively with FI (r = 0.34, P = 0.03). Left ventricular developed pressure (LVDP) plus rates of pressure development (+dP/dt) and decay (-dP/dt) declined with age and this was graded by frailty (r = -0.51, P = 0.0007; r = -0.48, P = 0.002; r = -0.56, P = 0.0002 for LVDP, +dP/dt and -dP/dt). Smaller, slower contractions graded by FI score were also seen in ventricular myocytes. Contractile dysfunction in cardiomyocytes isolated from frail mice was attributable to parallel changes in underlying Ca2+ transients. These changes were not due to reduced sarcoplasmic reticulum stores, but were graded by smaller Ca2+ currents (r = -0.40, P = 0.008), lower gain (r = -0.37, P = 0.02) and reduced expression of Cav1.2 protein (r = -0.68, P = 0.003). These results show that cardiac hypertrophy and contractile dysfunction in naturally aging mice are graded by overall health and suggest that frailty, in addition to chronological age, can help explain heterogeneity in cardiac aging.


Assuntos
Envelhecimento/fisiologia , Fragilidade/fisiopatologia , Ventrículos do Coração/fisiopatologia , Miócitos Cardíacos/fisiologia , Função Ventricular Esquerda/fisiologia , Animais , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiologia , Remodelação Ventricular/fisiologia
14.
Basic Res Cardiol ; 112(4): 44, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28612155

RESUMO

In heart failure (HF), dysregulated cardiac ryanodine receptors (RyR2) contribute to the generation of diastolic Ca2+ waves (DCWs), thereby predisposing adrenergically stressed failing hearts to life-threatening arrhythmias. However, the specific cellular, subcellular, and molecular defects that account for cardiac arrhythmia in HF remain to be elucidated. Patch-clamp techniques and confocal Ca2+ imaging were applied to study spatially defined Ca2+ handling in ventricular myocytes isolated from normal (control) and failing canine hearts. Based on their activation time upon electrical stimulation, Ca2+ release sites were categorized as coupled, located in close proximity to the sarcolemmal Ca2+ channels, and uncoupled, the Ca2+ channel-free non-junctional Ca2+ release units. In control myocytes, stimulation of ß-adrenergic receptors with isoproterenol (Iso) resulted in a preferential increase in Ca2+ spark rate at uncoupled sites. This site-specific effect of Iso was eliminated by the phosphatase inhibitor okadaic acid, which caused similar facilitation of Ca2+ sparks at coupled and uncoupled sites. Iso-challenged HF myocytes exhibited increased predisposition to DCWs compared to control myocytes. In addition, the overall frequency of Ca2+ sparks was increased in HF cells due to preferential stimulation of coupled sites. Furthermore, coupled sites exhibited accelerated recovery from functional refractoriness in HF myocytes compared to control myocytes. Spatially resolved subcellular Ca2+ mapping revealed that DCWs predominantly originated from coupled sites. Inhibition of CaMKII suppressed DCWs and prevented preferential stimulation of coupled sites in Iso-challenged HF myocytes. These results suggest that CaMKII- (and phosphatase)-dependent dysregulation of junctional Ca2+ release sites contributes to Ca2+-dependent arrhythmogenesis in HF.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca , Microdomínios da Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estimulação Cardíaca Artificial , Diástole , Modelos Animais de Doenças , Cães , Feminino , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Potenciais da Membrana , Miócitos Cardíacos/efeitos dos fármacos , Período Refratário Eletrofisiológico , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Sus scrofa , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
15.
Curr Top Membr ; 78: 451-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27586292

RESUMO

It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II.


Assuntos
Miócitos Cardíacos/fisiologia , Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Azetidinas/farmacologia , Venenos de Cnidários/farmacologia , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Tetrodotoxina/farmacologia , Função Ventricular/efeitos dos fármacos
16.
Biochim Biophys Acta ; 1843(2): 335-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269843

RESUMO

In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Ventrículos do Coração/patologia , Transdução de Sinais , Actinas/metabolismo , Angiotensina II/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno/biossíntese , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibrose , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Inativação Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Fenótipo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
17.
J Mol Cell Cardiol ; 66: 63-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215710

RESUMO

Ca(2+) flux through l-type CaV1.2 channels shapes the waveform of the ventricular action potential (AP) and is essential for excitation-contraction (EC) coupling. Timothy syndrome (TS) is a disease caused by a gain-of-function mutation in the CaV1.2 channel (CaV1.2-TS) that decreases inactivation of the channel, which increases Ca(2+) influx, prolongs APs, and causes lethal arrhythmias. Although many details of the CaV1.2-TS channels are known, the cellular mechanisms by which they induce arrhythmogenic changes in intracellular Ca(2+) remain unclear. We found that expression of CaV1.2-TS channels increased sarcolemmal Ca(2+) "leak" in resting TS ventricular myocytes. This resulted in higher diastolic [Ca(2+)]i in TS ventricular myocytes compared to WT. Accordingly, TS myocytes had higher sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+) spark activity, larger amplitude [Ca(2+)]i transients, and augmented frequency of Ca(2+) waves. The large SR Ca(2+) release in TS myocytes had a profound effect on the kinetics of CaV1.2 current in these cells, increasing the rate of inactivation to a high, persistent level. This limited the amount of influx during EC coupling in TS myocytes. The relationship between the level of expression of CaV1.2-TS channels and the probability of Ca(2+) wave occurrence was non-linear, suggesting that even low levels of these channels were sufficient to induce maximal changes in [Ca(2+)]i. Depolarization of WT cardiomyocytes with a TS AP waveform increased, but did not equalize [Ca(2+)]i, compared to depolarization of TS myocytes with the same waveform. We propose that CaV1.2-TS channels increase [Ca(2+)] in the cytosol and the SR, creating a Ca(2+)overloaded state that increases the probability of arrhythmogenic spontaneous SR Ca(2+) release.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Sindactilia/metabolismo , Potenciais de Ação/fisiologia , Animais , Transtorno Autístico , Canais de Cálcio Tipo L/genética , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Expressão Gênica , Ventrículos do Coração/patologia , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Camundongos , Miócitos Cardíacos/patologia , Retículo Sarcoplasmático/metabolismo , Sindactilia/genética , Sindactilia/patologia
18.
J Mol Cell Cardiol ; 67: 86-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361238

RESUMO

cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38ß. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca(2+)-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca(2+)-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca(2+) uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.


Assuntos
Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Interferência de RNA , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
19.
Biomolecules ; 13(8)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627324

RESUMO

Calcium (Ca2+) sparks are the elementary events of excitation-contraction coupling, yet they are not explicitly represented in human ventricular myocyte models. A stochastic ventricular cardiomyocyte human model that adapts to intracellular Ca2+ ([Ca2+]i) dynamics, spark regulation, and frequency-dependent changes in the form of locally controlled Ca2+ release was developed. The 20,000 CRUs in this model are composed of 9 individual LCCs and 49 RyRs that function as couplons. The simulated action potential duration at 1 Hz steady-state pacing is ~0.280 s similar to human ventricular cell recordings. Rate-dependence experiments reveal that APD shortening mechanisms are largely contributed by the L-type calcium channel inactivation, RyR open fraction, and [Ca2+]myo concentrations. The dynamic slow-rapid-slow pacing protocol shows that RyR open probability during high pacing frequency (2.5 Hz) switches to an adapted "nonconducting" form of Ca2+-dependent transition state. The predicted force was also observed to be increased in high pacing, but the SR Ca2+ fractional release was lower due to the smaller difference between diastolic and systolic [Ca2+]SR. Restitution analysis through the S1S2 protocol and increased LCC Ca2+-dependent activation rate show that the duration of LCC opening helps modulate its effects on the APD restitution at different diastolic intervals. Ultimately, a longer duration of calcium sparks was observed in relation to the SR Ca2+ loading at high pacing rates. Overall, this study demonstrates the spontaneous Ca2+ release events and ion channel responses throughout various stimuli.


Assuntos
Artrogripose , Sinalização do Cálcio , Humanos , Miócitos Cardíacos , Potenciais de Ação , Ventrículos do Coração
20.
Cells ; 11(12)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741007

RESUMO

Cardiovascular disease is the leading cause of death worldwide due in a large part to arrhythmia. In order to understand how calcium dynamics play a role in arrhythmogenesis, normal and dysfunctional Ca2+ signaling in a subcellular, cellular, and tissued level is examined using cardiac ventricular myocytes at a high temporal and spatial resolution using multiscale computational modeling. Ca2+ sparks underlie normal excitation-contraction coupling. However, under pathological conditions, Ca2+ sparks can combine to form Ca2+ waves. These propagating elevations of (Ca2+)i can activate an inward Na+-Ca2+ exchanger current (INCX) that contributes to early after-depolarization (EADs) and delayed after-depolarizations (DADs). However, how cellular currents lead to full depolarization of the myocardium and how they initiate extra systoles is still not fully understood. This study explores how many myocytes must be entrained to initiate arrhythmogenic depolarizations in biophysically detailed computational models. The model presented here suggests that only a small number of myocytes must activate in order to trigger an arrhythmogenic propagating action potential. These conditions were examined in 1-D, 2-D, and 3-D considering heart geometry. The depolarization of only a few hundred ventricular myocytes is required to trigger an ectopic depolarization. The number decreases under disease conditions such as heart failure. Furthermore, in geometrically restricted parts of the heart such as the thin muscle strands found in the trabeculae and papillary muscle, the number of cells needed to trigger a propagating depolarization falls even further to less than ten myocytes.


Assuntos
Sinalização do Cálcio , Acoplamento Excitação-Contração , Animais , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio/fisiologia , Miócitos Cardíacos/metabolismo , Ratos , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa