Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 102(5): 2441-2454, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29387953

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 106 to 2.09 × 107 and 2.07 × 106 to 3.38 × 107copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.


Assuntos
Sedimentos Geológicos/microbiologia , Methylococcaceae/isolamento & purificação , Methylococcaceae/metabolismo , Nitritos/metabolismo , Anaerobiose , China , DNA Bacteriano/genética , Estuários , Metano/metabolismo , Methylococcaceae/classificação , Methylococcaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas
2.
Sci Total Environ ; 698: 134291, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783447

RESUMO

Anaerobic ammonium oxidation (anammox), a microbial process in which NH4+ is oxidized to N2 gas, is considered a significant nitrogen cycle process, but its significance in mangrove wetland sediments, particularly its depth- and genus-specific distribution and activity have remained uncertain. Here we report the vertical distribution, abundance, activity and role of anammox bacteria in mangrove sediments of Zhangjiang Estuary, China. We used stable isotope-tracer techniques, 16S rRNA and anammox bacterial functional gene (Hydrazine synthase B: hzsB) clone libraries and quantitative polymerase chain reaction (qPCR) assays, along with an assessment of nutrient profiles of sediment core samples. We observed a widespread occurrence of anammox bacteria at different depths of mangrove sediments. The abundance of anammox bacterial 16S rRNA and hzsB genes ranged from 0.41×107 to 9.74×107 and from 0.42×106 to 6.44×106 copies per gram of dry soil and peaked in the upper layer of mangrove sediments. We also verified the co-occurrence of different genera of anammox microorganisms in mangrove sediments, with Candidatus Scalindua and Candidatus Kuenenia being the dominant genera. Potential anammox rates ranged from 4.83 to 277.36 nmolN2·g-1·d-1 at different depths of sediment cores, and the highest rates were found in the deeper layer (70-100cm) of mangrove sediments. Scaling our findings up to the entire mangrove system, we estimated that anammox hotspots accounted for a loss of 751 gN·m-2·y-1, and contributed to over 12% of the nitrogen lost from the deeper layer of mangrove sediments in this region.


Assuntos
Compostos de Amônio/metabolismo , Monitoramento Ambiental , Nitrogênio/análise , Áreas Alagadas , Anaerobiose , China , Estuários , Sedimentos Geológicos/microbiologia , Nitrogênio/metabolismo , Ciclo do Nitrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa