Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Immunity ; 54(7): 1447-1462.e5, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33979579

RESUMO

Two sets of innate immune proteins detect pathogens. Pattern recognition receptors (PRRs) bind microbial products, whereas guard proteins detect virulence factor activities by the surveillance of homeostatic processes within cells. While PRRs are well known for their roles in many types of infections, the role of guard proteins in most infectious contexts remains less understood. Here, we demonstrated that inhibition of protein synthesis during viral infection is sensed as a virulence strategy and initiates pyroptosis in human keratinocytes. We identified the BCL-2 family members MCL-1 and BCL-xL as sensors of translation shutdown. Virus- or chemical-induced translation inhibition resulted in MCL-1 depletion and inactivation of BCL-xL, leading to mitochondrial damage, caspase-3-dependent cleavage of gasdermin E, and release of interleukin-1α (IL-1α). Blocking this pathway enhanced virus replication in an organoid model of human skin. Thus, MCL-1 and BCL-xL can act as guard proteins within barrier epithelia and contribute to antiviral defense.


Assuntos
Apoptose/imunologia , Células Epiteliais/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Piroptose/imunologia , Receptores de Estrogênio/imunologia , Vírus/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Caspase 3/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Interleucina-1alfa/imunologia , Camundongos , Mitocôndrias/imunologia , Células NIH 3T3 , Células Vero , Replicação Viral/imunologia , Proteína bcl-X/imunologia
2.
Proc Natl Acad Sci U S A ; 121(35): e2406421121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159381

RESUMO

Viral infection is frequently assayed by ongoing expression of viral genes. These assays fail to identify cells that have been exposed to the virus but limit or inhibit viral replication. To address this limitation, we used a dual-labeling vesicular stomatitis virus (DL-VSV), which has a deletion of the viral glycoprotein gene, to allow evaluation of primary infection outcomes. This virus encodes Cre, which can stably mark any cell with even a minimal level of viral gene expression. Additionally, the virus encodes GFP, which distinguishes cells with higher levels of viral gene expression, typically due to genome replication. Stereotactic injections of DL-VSV into the murine brain showed that different cell types had very different responses to the virus. Almost all neurons hosted high levels of viral gene expression, while glial cells varied in their responses. Astrocytes (Sox9+) were predominantly productively infected, while oligodendrocytes (Sox10+) were largely abortively infected. Microglial cells (Iba1+) were primarily uninfected. Furthermore, we monitored the early innate immune response to viral infection and identified unique patterns of interferon (IFN) induction. Shortly after infection, microglia were the main producers of IFNb, whereas later, oligodendrocytes were the main producers. IFNb+ cells were primarily abortively infected regardless of cell type. Last, we investigated whether IFN signaling had any impact on the outcome of primary infection and did not observe significant changes, suggesting that intrinsic factors are likely responsible for determining the outcome of primary infection.


Assuntos
Astrócitos , Animais , Camundongos , Astrócitos/virologia , Astrócitos/metabolismo , Replicação Viral , Microglia/virologia , Microglia/metabolismo , Microglia/imunologia , Neurônios/virologia , Neurônios/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Vesiculovirus/fisiologia , Vesiculovirus/imunologia , Vesiculovirus/genética , Oligodendroglia/virologia , Oligodendroglia/metabolismo , Estomatite Vesicular/virologia , Estomatite Vesicular/imunologia , Imunidade Inata , Camundongos Endogâmicos C57BL , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/imunologia , Neuroglia/virologia , Neuroglia/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(18): e2111948119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476516

RESUMO

The polymerase complex of nonsegmented negative-strand RNA viruses primarily consists of a large (L) protein and a phosphoprotein (P). L is a multifunctional enzyme carrying out RNA-dependent RNA polymerization and all other steps associated with transcription and replication, while P is the nonenzymatic cofactor, regulating the function and conformation of L. The structure of a purified vesicular stomatitis virus (VSV) polymerase complex containing L and associated P segments has been determined; however, the location and manner of the attachments of L and P within each virion are unknown, limiting our mechanistic understanding of VSV RNA replication and transcription and hindering engineering efforts of this widely used anticancer and vaccine vector. Here, we have used cryo-electron tomography to visualize the VSV virion, revealing the attachment of the ring-shaped L molecules to VSV nucleocapsid proteins (N) throughout the cavity of the bullet-shaped nucleocapsid. Subtomogram averaging and three-dimensional classification of regions containing N and the matrix protein (M) have yielded the in situ structure of the polymerase complex. On average, ∼55 polymerase complexes are packaged in each virion. The capping domain of L interacts with two neighboring N molecules through flexible attachments. P, which exists as a dimer, bridges separate N molecules and the connector and C-terminal domains of L. Our data provide the structural basis for recruitment of L to N by P in virus assembly and for flexible attachments between L and N, which allow a quick response of L in primary transcription upon cell entry.


Assuntos
Vírus de RNA , Estomatite Vesicular , Animais , RNA Polimerase Dependente de RNA , Vírus da Estomatite Vesicular Indiana/metabolismo , Vesiculovirus , Vírion
4.
Proc Natl Acad Sci U S A ; 119(12): e2200065119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286211

RESUMO

SignificanceConcern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge.


Assuntos
Infecções por Henipavirus/veterinária , Vírus Nipah/imunologia , Doenças dos Primatas/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Biomarcadores , Vetores Genéticos , Estimativa de Kaplan-Meier , Testes de Neutralização , Avaliação de Resultados em Cuidados de Saúde , Doenças dos Primatas/diagnóstico , Doenças dos Primatas/mortalidade , Doenças dos Primatas/virologia , Vacinação , Carga Viral
5.
BMC Genomics ; 25(1): 62, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225547

RESUMO

BACKGROUND: Vesicular stomatitis virus (VSV) is a typical non-segmented negative-sense RNA virus of the genus Vesiculovirus in the family Rhabdoviridae. VSV can infect a wide range of animals, including humans, with oral blister epithelial lesions. VSV is an excellent model virus with a wide range of applications as a molecular tool, a vaccine vector, and an oncolytic vector. To further understand the interaction between VSV and host cells and to provide a theoretical basis for the application prospects of VSV, we analyzed the expression of host differentially expressed genes (DEGs) during VSV infection using RNA-Seq. RESULTS: Our analyses found a total of 1015 differentially expressed mRNAs and 161 differentially expressed LncRNAs in BHK-21 cells infected with VSV for 24 h compared with controls. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment showed that the differentially expressed lncRNAs and their target genes were mainly concentrated in pathways related to apoptosis, cancer, disease, and immune system activation, including the TNF, P53, MAPK, and NF-kappaB signaling pathways. The differentially expressed lncRNA can modulate immune processes by regulating genes involved in these signaling transmissions. Ten randomly selected DEGs, namely, Il12rb2, F2, Masp2, Mcl1, FGF18, Ripk1, Fas, BMF, POLK, and JAG1, were validated using RT-qPCR. As predicted through RNA-Seq analysis, these DEGs underwent either up- or downregulation, suggesting that they may play key regulatory roles in the pathways mentioned previously. CONCLUSIONS: Our study showed that VSV infection alters the host metabolic network and activates immune-related pathways, such as MAPK and TNF. The above findings provide unique insights for further study of the mechanism of VSV-host interactions and, more importantly, provide a theoretical basis for VSV as an excellent vaccine carrier.


Assuntos
RNA Longo não Codificante , Vacinas , Animais , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , RNA-Seq , Transcriptoma
6.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750591

RESUMO

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Assuntos
Células T Matadoras Naturais , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Camundongos , Células T Matadoras Naturais/imunologia , Terapia Viral Oncolítica/métodos , Humanos , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Imunoterapia/métodos , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Terapia Combinada , Metástase Neoplásica , Vesiculovirus/genética , Células Dendríticas/imunologia , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Modelos Animais de Doenças
7.
Emerg Infect Dis ; 30(5): 1004-1008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666640

RESUMO

We evaluated the in vitro effects of lyophilization for 2 vesicular stomatitis virus-based vaccines by using 3 stabilizing formulations and demonstrated protective immunity of lyophilized/reconstituted vaccine in guinea pigs. Lyophilization increased stability of the vaccines, but specific vesicular stomatitis virus-based vaccines will each require extensive analysis to optimize stabilizing formulations.


Assuntos
Modelos Animais de Doenças , Liofilização , Estomatite Vesicular , Vacinas Virais , Animais , Cobaias , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Vesiculovirus/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Eficácia de Vacinas , Vírus da Estomatite Vesicular Indiana/imunologia
8.
J Virol ; 97(6): e0037223, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199666

RESUMO

Viral oncolytic immunotherapy is a nascent field that is developing tools to direct the immune system to find and eliminate cancer cells. Safety is improved by using cancer-targeted viruses that infect or grow poorly on normal cells. The recent discovery of the low-density lipoprotein (LDL) receptor as the major vesicular stomatitis virus (VSV) binding site allowed for the creation of a Her2/neu-targeted replicating recombinant VSV (rrVSV-G) by eliminating the LDL receptor binding site in the VSV-G glycoprotein (gp) and adding a sequence coding for a single chain antibody (SCA) to the Her2/neu receptor. The virus was adapted by serial passage on Her2/neu-expressing cancer cells resulting in a virus that yielded a 15- to 25-fold higher titer following in vitro infection of Her2/neu+-expressing cell lines than that of Her2/neu-negative cells (~1 × 108/mL versus 4 × 106 to 8 × 106/mL). An essential mutation resulting in a higher titer virus was a threonine-to-arginine change that produced an N-glycosylation site in the SCA. Infection of Her2/neu+ subcutaneous tumors yielded >10-fold more virus on days 1 and 2 than Her2/neu- tumors, and virus production continued for 5 days in Her2/neu+ tumors compared with 3 days that of 3 days in Her2/neu- tumors. rrVSV-G cured 70% of large 5-day peritoneal tumors compared with a 10% cure by a previously targeted rrVSV with a modified Sindbis gp. rrVSV-G also cured 33% of very large 7-day tumors. rrVSV-G is a new targeted oncolytic virus that has potent antitumor capabilities and allows for heterologous combination with other targeted oncolytic viruses. IMPORTANCE A new form of vesicular stomatitis virus (VSV) was created that specifically targets and destroys cancer cells that express the Her2/neu receptor. This receptor is commonly found in human breast cancer and is associated with a poor prognosis. In laboratory tests using mouse models, the virus was highly effective at eliminating implanted tumors and creating a strong immune response against cancer. VSV has many advantages as a cancer treatment, including high levels of safety and efficacy and the ability to be combined with other oncolytic viruses to enhance treatment results or to create an effective cancer vaccine. This new virus can also be easily modified to target other cancer cell surface molecules and to add immune-modifying genes. Overall, this new VSV is a promising candidate for further development as an immune-based cancer therapy.


Assuntos
Neoplasias da Mama , Glicoproteínas , Terapia Viral Oncolítica , Vírus Oncolíticos , Vesiculovirus , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Replicação Viral , Análise de Sobrevida
9.
J Virol ; 97(9): e0100523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671865

RESUMO

Oncolytic virus (OV) therapy is a promising virus-based approach against various malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies demonstrated that human PDAC cell lines are highly variable in their permissiveness to OVs. Mouse PDAC cell lines, which are widely used for in vivo examination of the adaptive immune responses during OV and other cancer therapies, have never been examined systematically for the impact of intertumoral heterogeneity (the differences observed between tumors in different patients) on OV virus efficacy. Here, we examined phenotypically and genotypically three commonly used allograftable mouse PDAC cell lines (C57BL6 genetic background): Panc02 (derived from chemically induced PDAC; also known as Pan02), and two cell lines originated from PDACs developed in two different KPC (KrasG12D, Trp53R172H, and PDX-1-Cre) mouse models. Our study (i) characterized the ability of a widely used attenuated oncolytic vesicular stomatitis virus VSV-ΔM51-GFP to infect, replicate in, and kill mouse PDAC cells; (ii) examined their innate antiviral responses; (iii) compared their permissiveness to a non-attenuated VSV-Mwt-GFP and chemotherapeutic drugs; and (iv) analyzed their karyotype and exome. Mouse PDAC cell lines showed high divergence in their permissiveness to VSV-ΔM51-GFP, which negatively correlated with their abilities to mount innate antiviral responses, while all three cell lines were highly permissive to VSV-Mwt-GFP. No correlation was found between resistance to VSV-ΔM51-GFP and chemotherapy. Also, mouse PDAC cell lines showed high divergence in their karyotype and exome. The exome analysis demonstrated that more VSV-ΔM51-GFP-permissive mouse PDAC cell lines harbor mutations in multiple important antiviral genes, such as TYK2, JAK2, and JAK3. IMPORTANCE Oncolytic virus (OV) therapy is a promising virus-based approach against various malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies using various human PDAC cell lines demonstrated that they are highly variable in their permissiveness to OVs. In this study, we examined phenotypically and genotypically three commonly used allograftable mouse PDAC cell lines, which are widely used for in vivo examination of the adaptive immune responses during cancer therapies. Mouse PDAC cell lines showed high divergence in their permissiveness to oncolytic vesicular stomatitis virus (VSV), which negatively correlated with their abilities to mount innate antiviral responses. Also, we discovered that more VSV-permissive mouse PDAC cell lines harbor mutations in multiple important antiviral genes, such as TYK2, JAK2, and JAK3. Our study provides essential information about three model mouse PDAC cell lines and proposes a novel platform to study OV-based therapies against different PDACs in immunocompetent mice.


Assuntos
Carcinoma Ductal Pancreático , Interferon Tipo I , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Vírus Oncolíticos/fisiologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Vírus da Estomatite Vesicular Indiana/fisiologia
10.
J Virol ; 97(8): e0024623, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578231

RESUMO

The phospho- (P) protein, the co-factor of the RNA polymerase large (L) protein, of vesicular stomatitis virus (VSV, a prototype of nonsegmented negative-strand RNA viruses) plays pivotal roles in transcription and replication. However, the precise mechanism underlying the transcriptional transactivation by the P protein has remained elusive. Here, using an in vitro transcription system and a series of deletion mutants of the P protein, we mapped a region encompassing residues 51-104 as a transactivation domain (TAD) that is critical for terminal de novo initiation, the initial step of synthesis of the leader RNA and anti-genome/genome, with the L protein. Site-directed mutagenesis revealed that conserved amino acid residues in three discontinuous L-binding sites within the TAD are essential for the transactivation activity of the P protein or important for maintaining its full activity. Importantly, relative inhibitory effects of TAD point mutations on synthesis of the full-length leader RNA and mRNAs from the 3'-terminal leader region and internal genes, respectively, of the genome were similar to those on terminal de novo initiation. Furthermore, any of the examined TAD mutations did not alter the gradient pattern of mRNAs synthesized from internal genes, nor did they induce the production of readthrough transcripts. These results suggest that these TAD mutations impact mainly terminal de novo initiation but rarely other steps (e.g., elongation, termination, internal initiation) of single-entry stop-start transcription. Consistently, the mutations of the essential or important amino acid residues within the P TAD were lethal or deleterious to VSV replication in host cells. IMPORTANCE RNA-dependent RNA polymerase L proteins of nonsegmented negative-strand RNA viruses belonging to the Mononegavirales order require their cognate co-factor P proteins or their counterparts for genome transcription and replication. However, exact roles of these co-factor proteins in modulating functions of L proteins during transcription and replication remain unknown. In this study, we revealed that three discrete L-binding motifs within a transactivation domain of the P protein of vesicular stomatitis virus, a prototypic nonsegmented negative-strand RNA virus, are required for terminal de novo initiation mediated by the L protein, which is the first step of synthesis of the leader RNA as well as genome/anti-genome.


Assuntos
Estomatite Vesicular , Animais , Estomatite Vesicular/genética , Ativação Transcricional , RNA Viral/genética , RNA Viral/metabolismo , Vesiculovirus/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo , RNA Mensageiro/genética , Aminoácidos/genética , Transcrição Gênica , Replicação Viral/genética
11.
Biotechnol Bioeng ; 121(2): 618-639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947118

RESUMO

The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.


Assuntos
Lentivirus , Estomatite Vesicular , Animais , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Células HEK293 , Peptídeos/metabolismo , Vesiculovirus/genética , Vetores Genéticos
12.
Microbiol Immunol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39310974

RESUMO

Borna disease virus 1 (BoDV-1) causes acute fatal encephalitis in mammals, including humans. Despite its importance, research on BoDV-1 cell entry has been hindered by low infectious viral particle production in cells and the lack of cytopathic effects, which are typically useful for screening. To address these issues, we developed a method to efficiently produce vesicular stomatitis virus (VSV) pseudotyped with glycoprotein (G) of members of the genus Orthobornavirus, including BoDV-1. We discovered that optimal G expression is required to obtain a high infectivity titer of the VSV pseudotyped virus. Remarkably, the infectivity of the VSV pseudotyped virus with G from the BoDV-1 strain huP2br was significantly higher than that of the VSV pseudotyped virus with G from the He/80 strain. Mutational analysis demonstrated that the methionine at BoDV-1-G residue 307 increases the infectivity titer of VSV pseudotyped with BoDV-1-G (VSV-BoDV-1-G). A cell‒cell fusion assay indicated that this residue plays a pivotal role in membrane fusion, thus suggesting that high membrane fusion activity and a broad pH range for membrane fusion are crucial for achieving a high infectivity titer of VSV-BoDV-1-G. This finding may be extended to increase the infectivity titer of VSV pseudotyped virus with other orthobornavirus G. Our study also contributes to identifying functional domains of BoDV-1-G and provides insight into G-mediated cell entry.

13.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37735876

RESUMO

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Assuntos
Vetores Genéticos , Neoplasias , Interferência de RNA , Vetores Genéticos/genética , Terapia Genética , Técnicas de Transferência de Genes , Neoplasias/genética , Neoplasias/terapia
14.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126087

RESUMO

Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Vacinas Virais , Animais , Cricetinae , Vacinas Virais/imunologia , Marburgvirus/imunologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/imunologia , Modelos Animais de Doenças , Adenoviridae/genética , Adenoviridae/imunologia , Vesiculovirus/imunologia , Vesiculovirus/genética , Anticorpos Antivirais/imunologia , Vacinação/métodos
15.
Chin Med Sci J ; 39(1): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38384000

RESUMO

Objective To explore the influence of extracellular matrix protein ABI-interactor 3-binding protein (ABI3BP) on vesicular stomatitis virus (VSV) genome replication and innate immune signaling pathway.Methods The small interfering RNA (siRNA) was transfected to knock down ABI3BP gene in human skin fibroblast BJ-5ta cells. VSV-green fluorescent protein (VSV-GFP)-infected cell model was established. The morphological changes and F-actin stress fiber formation were detected on ABI3BP knockdown cells by phalloidin immunofluorescence staining. The mRNA level of virus replication was detected by RT-qPCR in BJ-5ta cells after VSV-GFP infection; western blotting was performed to detect the changes in interferon regulatory factor 3 (IRF3) and TANK-binding kinase 1 (TBK1) phosphorylation levels.Results The VSV-GFP-infected BJ-5ta cell model was successfully established. Efficient knockdown of ABI3BP in BJ-5ta cells was achieved. Phalloidin immunofluorescence staining revealed structural rearrangement of intracellular F-actin after ABI3BP gene knockdown. Compared with the control group, the gene copy number of VSV-GFP in ABI3BP knockdown cells increased by 2.2 - 3.5 times (P<0.01) and 2.2 - 4.0 times (P<0.01) respectively when infected with VSV of multiplicity of infection 0.1 and 1. The expression of viral protein significantly increased in ABI3BP knockdown cells after virus infection. The activation of type-I interferon pathway, as determined by phosphorylated IRF3 and phosphorylated TBK1, was significantly decreased in ABI3BP knockdown cells after VSV-GFP infection.Conclusions Extracellular matrix protein ABI3BP plays an important role in maintaining the formation and rearrangement of actin structure. ABI3BP gene deletion promotes RNA virus replication, and ABI3BP is an important molecule that maintains the integrity of type I interferon pathway.


Assuntos
Estomatite Vesicular , Animais , Humanos , Estomatite Vesicular/metabolismo , Actinas/genética , Actinas/metabolismo , Faloidina/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Antivirais , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Transporte
16.
J Infect Dis ; 228(Suppl 7): S660-S670, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37171813

RESUMO

BACKGROUND: The family Filoviridae consists of several virus members known to cause significant mortality and disease in humans. Among these, Ebola virus (EBOV), Marburg virus (MARV), Sudan virus (SUDV), and Bundibugyo virus (BDBV) are considered the deadliest. The vaccine, Ervebo, was shown to rapidly protect humans against Ebola disease, but is indicated only for EBOV infections with limited cross-protection against other filoviruses. Whether multivalent formulations of similar recombinant vesicular stomatitis virus (rVSV)-based vaccines could likewise confer rapid protection is unclear. METHODS: Here, we tested the ability of an attenuated, quadrivalent panfilovirus VesiculoVax vaccine (rVSV-Filo) to elicit fast-acting protection against MARV, EBOV, SUDV, and BDBV. Groups of cynomolgus monkeys were vaccinated 7 days before exposure to each of the 4 viral pathogens. All subjects (100%) immunized 1 week earlier survived MARV, SUDV, and BDBV challenge; 80% survived EBOV challenge. Survival correlated with lower viral load, higher glycoprotein-specific immunoglobulin G titers, and the expression of B-cell-, cytotoxic cell-, and antigen presentation-associated transcripts. CONCLUSIONS: These results demonstrate multivalent VesiculoVax vaccines are suitable for filovirus outbreak management. The highly attenuated nature of the rVSV-Filo vaccine may be preferable to the Ervebo "delta G" platform, which induced adverse events in a subset of recipients.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Vacinas Virais , Humanos , Animais , Vacinas Atenuadas , Macaca fascicularis , Vesiculovirus/genética , Vírus da Estomatite Vesicular Indiana , Anticorpos Antivirais
17.
J Infect Dis ; 228(Suppl 7): S712-S720, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290053

RESUMO

BACKGROUND: The filovirus Bundibugyo virus (BDBV) causes severe disease with a mortality rate of approximately 20%-51%. The only licensed filovirus vaccine in the United States, Ervebo, consists of a recombinant vesicular stomatitis virus (rVSV) vector that expresses Ebola virus (EBOV) glycoprotein (GP). Ervebo was shown to rapidly protect against fatal Ebola disease in clinical trials; however, the vaccine is only indicated against EBOV. Recent outbreaks of other filoviruses underscore the need for additional vaccine candidates, particularly for BDBV infections. METHODS: To examine whether the rVSV vaccine candidate rVSVΔG/BDBV-GP could provide therapeutic protection against BDBV, we inoculated seven cynomolgus macaques with 1000 plaque-forming units of BDBV, administering rVSVΔG/BDBV-GP vaccine to 6 of them 20-23 minutes after infection. RESULTS: Five of the treated animals survived infection (83%) compared to an expected natural survival rate of 21% in this macaque model. All treated animals showed an early circulating immune response, while the untreated animal did not. Surviving animals showed evidence of both GP-specific IgM and IgG production, while animals that succumbed did not produce significant IgG. CONCLUSIONS: This small, proof-of-concept study demonstrated early treatment with rVSVΔG/BDBV-GP provides a survival benefit in this nonhuman primate model of BDBV infection, perhaps through earlier initiation of adaptive immunity.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Vacinas Virais , Animais , Estomatite Vesicular/prevenção & controle , Anticorpos Antivirais , Vesiculovirus/genética , Glicoproteínas/genética , Macaca fascicularis , Imunoglobulina G
18.
Biochem Biophys Res Commun ; 654: 10-17, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36878035

RESUMO

Viral-like particles (VLPs) because of their non-infectious and high immunogenic properties have important applications in diagnostics, drug delivery, and vaccine production. They also serve as an attractive model system to study virus assembly and fusion processes. Unlike other flaviviruses, Dengue virus (DENV) is not very efficient in the production of VLPs on the expression of DENV structural proteins. On the other hand, the stem region and transmembrane region (TM) of G protein of Vesicular Stomatitis virus (VSV) alone are sufficient for budding. Here we generated chimeric VLPs replacing regions of stem and transmembrane domain (STEM) or only transmembrane domain (TM) of E protein of DENV-2 with corresponding regions of VSV G protein. Both chimeric proteins secreted VLPs at higher levels than the wild type (2-4 folds) without any significant change in the expression in the cell. Chimeric VLPs could be recognized by a conformational monoclonal antibody, 4G2. They were also found to interact with dengue-infected patient sera effectively thus implying that their antigenic determinants are preserved. In addition, they were able to bind to its putative receptor, heparin with similar affinity as the parent counterpart thus retaining its functional property. However, cell-cell fusion revealed that there is no significant increase in the fusion ability of chimeras as compared to the parent clone, whereas VSV G protein displayed high cell-cell fusion activity. Overall, this study suggests that chimeric dengue VLPs can be taken forward for their likely potential as vaccine production and serodiagnosis.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Proteínas do Envelope Viral/química
19.
J Virol ; 96(19): e0093422, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135365

RESUMO

A recently developed variational Bayesian analysis using pattern recognition and machine learning of single viral ribonucleoprotein (RNP) particle tracks in the cytoplasm of living cells provides a quantitative molecular explanation for active diffusion, a concept previously "explained" largely by hypothetical models based on indirect analyses such as continuum microrheology. Machine learning shows that vesicular stomatitis virus (VSV) RNP particles are temporarily confined to dynamic traps or pores made up of cytoskeletal elements. Active diffusion occurs when the particles escape from one trap to a nearby trap. In this paper, we demonstrate that actin filament disruption increased RNP mobility by increasing trap size. Inhibition of nonmuscle myosin II ATPase decreased mobility by decreasing trap size. Trap sizes were observed to fluctuate with time, dependent on nonmuscle myosin II activity. This model for active diffusion is likely to account for the dominant motion of other viral and cellular elements. IMPORTANCE RNA virus ribonucleoproteins (RNPs) are too large to freely diffuse in the host cytoplasm, yet their dominant motions consist of movements in random directions that resemble diffusion. We show that vesicular stomatitis virus (VSV) RNPs overcome limitations on diffusion in the host cytoplasm by hopping between traps formed in part by actin filaments and that these traps expand and contract by nonmuscle myosin II ATPase activity. ATP-dependent random motion of cellular particles has been termed "active diffusion." Thus, these mechanisms are applicable to active diffusion of other cellular and viral elements.


Assuntos
Citoesqueleto de Actina , Ribonucleoproteínas , Vírus da Estomatite Vesicular Indiana , Proteínas Virais , Adenosina Trifosfatases , Trifosfato de Adenosina , Animais , Teorema de Bayes , Humanos , Miosina Tipo II/metabolismo , Transporte Proteico , RNA Viral/genética , Ribonucleoproteínas/genética , Vírus da Estomatite Vesicular Indiana/genética , Proteínas Virais/genética
20.
Eur Biophys J ; 52(4-5): 379-386, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133524

RESUMO

Determination of the size, density, and mass of viral particles can provide valuable information to support process and formulation studies in clinical development. Analytical ultracentrifugation (AUC), as a first principal method, has been shown to be a beneficial tool for the characterization of the non-enveloped adeno associated virus (AAV). Here, we demonstrate the suitability of AUC for the challenging characterization of a representative for enveloped viruses, which usually are expected to exhibit higher dispersity than non-enveloped viruses. Specifically, the vesicular stomatitis virus (VSV)-based oncolytic virus VSV-GP was used to evaluate potential occurrence of non-ideal sedimentation by testing different rotor speeds and loading concentrations. The partial specific volume was determined via density gradients and density contrast experiments. Additionally, nanoparticle tracking analysis (NTA) was used to determine the hydrodynamic diameter of VSV-GP particles to calculate their molecular weight via the Svedberg equation. Overall, this study demonstrates the applicability of AUC and NTA for the characterization of size, density, and molar mass of an enveloped virus, namely VSV-GP.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Estomatite Vesicular , Animais , Humanos , Terapia Viral Oncolítica/métodos , Hidrodinâmica , Vesiculovirus , Vírus da Estomatite Vesicular Indiana , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa