Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.615
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 443-467, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471837

RESUMO

A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.


Assuntos
COVID-19 , Hipersensibilidade , Animais , Citocinas/metabolismo , Homeostase , Humanos , Linfócitos T Auxiliares-Indutores/metabolismo , Células Th2
2.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340578

RESUMO

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Vírus/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
3.
Cell ; 186(1): 131-146.e13, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36565697

RESUMO

Germinal centers (GCs) form in secondary lymphoid organs in response to infection and immunization and are the source of affinity-matured B cells. The duration of GC reactions spans a wide range, and long-lasting GCs (LLGCs) are potentially a source of highly mutated B cells. We show that rather than consisting of continuously evolving B cell clones, LLGCs elicited by influenza virus or SARS-CoV-2 infection in mice are sustained by progressive replacement of founder clones by naive-derived invader B cells that do not detectably bind viral antigens. Rare founder clones that resist replacement for long periods are enriched in clones with heavily mutated immunoglobulins, including some with very high affinity for antigen, that can be recalled by boosting. Our findings reveal underappreciated aspects of the biology of LLGCs generated by respiratory virus infection and identify clonal replacement as a potential constraint on the development of highly mutated antibodies within these structures.


Assuntos
Linfócitos B , Centro Germinativo , Infecções por Vírus de RNA , Animais , Camundongos , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais , COVID-19 , Centro Germinativo/citologia , Centro Germinativo/imunologia , SARS-CoV-2 , Influenza Humana , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/virologia
4.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736301

RESUMO

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Assuntos
COVID-19 , Mycobacterium , Criança , Humanos , Interferon gama , SARS-CoV-2 , Interferon-alfa , Fator Regulador 1 de Interferon
5.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669665

RESUMO

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Animais , Humanos , Camundongos , Galinhas , Furões , Vírus da Influenza A Subtipo H3N2 , Aerossóis e Gotículas Respiratórios
6.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812912

RESUMO

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Assuntos
Quirópteros , Células-Tronco Pluripotentes , Viroses , Vírus , Animais , Vírus/genética , Transcriptoma , Filogenia
7.
Cell ; 185(13): 2279-2291.e17, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35700730

RESUMO

The isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. We determined the structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and showed that its domain 0 recognizes sialosides. We identified that the CCoV-HuPn-2018 spike binds canine, feline, and porcine aminopeptidase N (APN) orthologs, which serve as entry receptors, and determined the structure of the receptor-binding B domain in complex with canine APN. The introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single-nucleotide polymorphisms might account for viral detection in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 spike-mediated entry, underscoring the cross-neutralizing activity among ɑ-coronaviruses. These data pave the way for vaccine and therapeutic development targeting this zoonotic pathogen representing the eighth human-infecting coronavirus.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Animais , Antígenos CD13/química , Antígenos CD13/metabolismo , Gatos , Linhagem Celular , Coronavirus/metabolismo , Coronavirus Humano 229E/metabolismo , Cães , Humanos , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos
8.
Cell ; 184(25): 6037-6051.e14, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852237

RESUMO

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.


Assuntos
Proteínas do Capsídeo/genética , Vírus Defeituosos Interferentes/metabolismo , Replicação Viral/efeitos dos fármacos , Administração Intranasal , Animais , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , COVID-19 , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Vírus Defeituosos Interferentes/patogenicidade , Modelos Animais de Doenças , Genoma Viral/genética , Humanos , Influenza Humana , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliovirus/genética , Poliovirus/metabolismo , Infecções Respiratórias/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
9.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
10.
Cell ; 177(5): 1109-1123.e14, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031001

RESUMO

Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.


Assuntos
Organismos Aquáticos/genética , Biodiversidade , Vírus de DNA/genética , DNA Viral/genética , Metagenoma , Microbiologia da Água
11.
Cell ; 175(2): 360-371.e13, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290142

RESUMO

Neanderthals and modern humans interbred at least twice in the past 100,000 years. While there is evidence that most introgressed DNA segments from Neanderthals to modern humans were removed by purifying selection, less is known about the adaptive nature of introgressed sequences that were retained. We hypothesized that interbreeding between Neanderthals and modern humans led to (1) the exposure of each species to novel viruses and (2) the exchange of adaptive alleles that provided resistance against these viruses. Here, we find that long, frequent-and more likely adaptive-segments of Neanderthal ancestry in modern humans are enriched for proteins that interact with viruses (VIPs). We found that VIPs that interact specifically with RNA viruses were more likely to belong to introgressed segments in modern Europeans. Our results show that retained segments of Neanderthal ancestry can be used to detect ancient epidemics.


Assuntos
Hibridização Genética/genética , Homem de Neandertal/genética , Vírus de RNA/genética , Alelos , Animais , Evolução Biológica , Genoma Humano/genética , Haplótipos , Hominidae/genética , Humanos , Filogenia , Vírus de RNA/patogenicidade , Seleção Genética/genética
12.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550789

RESUMO

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Assuntos
Proteínas de Transporte , Proteínas de Ligação a DNA , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/metabolismo , Fatores de Transcrição , Proteínas Virais , Replicação Viral/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/patologia , Humanos , Mapeamento de Interação de Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37557168

RESUMO

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Assuntos
Autoimunidade , Pâncreas , Camundongos , Animais , Pâncreas/patologia , Fígado , Linfócitos T , Linfonodos
14.
Cell ; 170(6): 1109-1119.e10, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886381

RESUMO

Here we report a phase 1b clinical trial testing the impact of oncolytic virotherapy with talimogene laherparepvec on cytotoxic T cell infiltration and therapeutic efficacy of the anti-PD-1 antibody pembrolizumab. Twenty-one patients with advanced melanoma were treated with talimogene laherparepvec followed by combination therapy with pembrolizumab. Therapy was generally well tolerated, with fatigue, fevers, and chills as the most common adverse events. No dose-limiting toxicities occurred. Confirmed objective response rate was 62%, with a complete response rate of 33% per immune-related response criteria. Patients who responded to combination therapy had increased CD8+ T cells, elevated PD-L1 protein expression, as well as IFN-γ gene expression on several cell subsets in tumors after talimogene laherparepvec treatment. Response to combination therapy did not appear to be associated with baseline CD8+ T cell infiltration or baseline IFN-γ signature. These findings suggest that oncolytic virotherapy may improve the efficacy of anti-PD-1 therapy by changing the tumor microenvironment. VIDEO ABSTRACT.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Melanoma/terapia , Terapia Viral Oncolítica/efeitos adversos , Terapia Combinada , Herpesviridae/genética , Humanos , Imunoterapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral
15.
Immunity ; 55(5): 800-818, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545029

RESUMO

Pathogenic enteric viruses are a major cause of morbidity and mortality, particularly among children in developing countries. The host response to enteric viruses occurs primarily within the mucosa, where the intestinal immune system must balance protection against pathogens with tissue protection and tolerance to harmless commensal bacteria and food. Here, we summarize current knowledge in natural immunity to enteric viruses, highlighting specialized features of the intestinal immune system. We further discuss how knowledge of intestinal anti-viral mechanisms can be translated into vaccine development with particular focus on immunization in the oral route. Research reveals that the intestine is a complex interface between enteric viruses and the host where environmental factors influence susceptibility and immunity to infection, while viral infections can have lasting implications for host health. A deeper mechanistic understanding of enteric anti-viral immunity with this broader context can ultimately lead to better vaccines for existing and emerging viruses.


Assuntos
Infecções por Enterovirus , Vacinas , Vírus , Antígenos Virais , Criança , Humanos , Imunidade Inata , Mucosa Intestinal , Intestinos
16.
Immunity ; 55(6): 945-964, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35637104

RESUMO

Many aspects of SARS-CoV-2 have fully conformed with the principles established by decades of viral immunology research, ultimately leading to the crowning achievement of highly effective COVID-19 vaccines. Nonetheless, the pandemic has also exposed areas where our fundamental knowledge is thinner. Some key unknowns are the duration of humoral immunity post-primary infection or vaccination and how long booster shots confer protection. As a corollary, if protection does not last as long as desired, what are some ways it can be improved? Here, I discuss lessons from other infections and vaccines that point to several key features that influence durable antibody production and the perseverance of immunity. These include (1) the specific innate sensors that are initially triggered, (2) the kinetics of antigen delivery and persistence, (3) the starting B cell receptor (BCR) avidity and antigen valency, and (4) the memory B cell subsets that are recalled by boosters. I further highlight the fundamental B cell-intrinsic and B cell-extrinsic pathways that, if understood better, would provide a rational framework for vaccines to reliably provide durable immunity.


Assuntos
COVID-19 , Vacinas , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , SARS-CoV-2 , Vacinação
17.
Immunity ; 55(11): 2118-2134.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36137543

RESUMO

While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.


Assuntos
Linfócitos B , Plasmócitos , Animais , Camundongos , Linfócitos T , Imunoglobulinas , Encéfalo , Imunidade nas Mucosas , Anticorpos Antivirais
18.
Immunity ; 54(4): 753-768.e5, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33765435

RESUMO

Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.


Assuntos
Imunidade/genética , Viroses/imunologia , Apresentação de Antígeno/genética , Estudos de Coortes , Hematopoese/genética , Humanos , Interferons/sangue , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Células Mieloides/imunologia , Células Mieloides/patologia , Prognóstico , Índice de Gravidade de Doença , Biologia de Sistemas , Transcriptoma , Viroses/sangue , Viroses/classificação , Viroses/genética , Vírus/classificação , Vírus/patogenicidade
19.
Genes Dev ; 36(3-4): 108-132, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193946

RESUMO

With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.


Assuntos
Biossíntese de Proteínas , Vírus , Animais , Interações Hospedeiro-Patógeno/genética , Estabilidade de RNA/genética , Ribossomos/genética , Vírus/genética , Vírus/metabolismo
20.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096040

RESUMO

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Assuntos
Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Orthomyxoviridae/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Anticorpos Amplamente Neutralizantes/genética , Reações Cruzadas , Epitopos de Linfócito B/imunologia , Genes de Imunoglobulinas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Orthomyxoviridae/classificação , Domínios Proteicos , Hipermutação Somática de Imunoglobulina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa