RESUMO
The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.
Assuntos
Fósforo , Quartzo , Fermentação , Areia , Anaerobiose , Cristalização , Esgotos , Eliminação de Resíduos Líquidos , Fosfatos/química , Compostos Ferrosos/químicaRESUMO
Vivianite crystallization has been regarded as a suitable option for recovering phosphorus (P) from P-containing wastewater. However, the presence of humic substances (HS) would inevitably affect the formation of vivianite crystals. Therefore, the influences of HS on vivianite crystallization and the changes in the harvested vivianite crystals were investigated in this study. The results suggested the inhibition effect of 70 mg/L HS on vivianite crystallization reached 12.24%, while it could be attenuated by increasing the pH and Fe/P ratio of the solution. Meanwhile, the addition of HS altered the size, purity, and morphology of recovered vivianite crystals due to the blockage of the growth sites on the crystal surface. Additionally, the formation of phosphate ester group, hydrogen bonding, and COOH-Fe2+ complexes are the potential mechanisms of HS interaction with vivianite crystals. The results obtained herein will help to elucidate the underlying mechanism of HS on vivianite crystallization from P-containing wastewater.
Assuntos
Fósforo , Águas Residuárias , Fósforo/química , Substâncias Húmicas , Cristalização , Eliminação de Resíduos Líquidos , Fosfatos/químicaRESUMO
An iron-retrofitted anaerobic baffled reactor (ABR) system was developed for the effective treatment of rural wastewater with reduced maintenance demand and aeration costs. Average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus of 99.4%, 62.7% and 92.6% were achieved respectively, when the ABR system was operating at steady state. With effective bioreduction of FeIII in the anaerobic chambers, phosphorus was immobilized in the sludge as vivianite, the sole phosphorus-carrying mineral. The FeIII in the recirculated sludge induced Feammox in the ABR reactor, contributing 14.8% to total nitrogen removal. Biophase separation and enrichment of microorganisms associated with iron and nitrogen transformations were observed in the system after Fe dosing, which enhanced the removal of pollutants. The coupling of Feammox and vivianite crystallization to remove nitrogen and phosphorus in an iron-retrofitted ABR would appear to be a promising technology for rural wastewater treatment.