Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 115: 59-68, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29621596

RESUMO

Epilepsy is one of the most common chronic neurological diseases, and its pharmacological treatment holds great importance for both physicians and national authorities, especially considering the high proportion of drug-resistant patients (about 30%). Lacosamide (LCM) is an effective and well-tolerated new-generation antiepileptic drug (AED), currently licensed as add-on therapy for partial-onset seizures. However, LCM mechanism of action is still a matter of debate, although its effect on the voltage sensitive sodium channels is by far the most recognized. This study aimed to retrospectively analyze a cohort of 157 drug-resistant patients treated with LCM to describe the most common and effective therapeutic combinations and to investigate if the LCM can affect also GABAA-mediated neurotransmission as previously shown for levetiracetam (LEV). In our cohort, LEV resulted the compound most frequently associated with LCM in the responder subgroup. We therefore translated this clinical observation into the laboratory bench by taking advantage of the technique of "membrane micro-transplantation" in Xenopus oocytes and electrophysiological approaches to study human GABAA-evoked currents. In cortical brain tissues from refractory epileptic patients, we found that LCM reduces the use-dependent GABA impairment (i.e., "rundown") that it is considered one of the specific hallmarks of drug-resistant epilepsies. Notably, in line with our clinical observations, we found that the co-treatment with subthreshold concentrations of LCM and LEV, which had no effect on GABAA currents on their own, reduced GABA impairment in drug-resistant epileptic patients, and this effect was blocked by PKC inhibitors. Our findings demonstrate, for the first time, that LCM targets GABAA receptors and that it can act synergistically with LEV, improving the GABAergic function. This novel mechanism might contribute to explain the clinical efficacy of LCM-LEV combination in several refractory epileptic patients.


Assuntos
Anticonvulsivantes/administração & dosagem , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Lacosamida/administração & dosagem , Levetiracetam/administração & dosagem , Receptores de GABA-A/fisiologia , Adulto , Idoso , Animais , Anticonvulsivantes/sangue , Estudos de Coortes , Epilepsia Resistente a Medicamentos/sangue , Epilepsia Resistente a Medicamentos/diagnóstico , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Lacosamida/sangue , Levetiracetam/sangue , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Xenopus , Adulto Jovem
2.
Front Physiol ; 13: 938555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910574

RESUMO

Insects can use plant volatiles to guide certain behaviors, such as courtship, mating, host positioning, and habitat selection. Plutella xylostella is a global agricultural pest and has always been closely studied, but relatively few studies assess the molecular mechanism of P. xylostella exposed to plant volatiles. In this study, we analyzed the role of the odorant receptor PxylOR11 when P. xylostella is exposed to plant volatiles. Our analysis of tissue expression demonstrated that PxylOR11 is expressed in the antennae and that expression levels in female moths were significantly higher than in male moths. Functional analyses using the Xenopus oocyte expression system demonstrated that PxylOR11 was tuned to three aromatic compounds: benzyl alcohol, salicylaldehyde, and phenylacetaldehyde. Electroantennogram analyses revealed that these three aromatic compounds can induce electrophysiological responses in the antennae of P. xylostella, and that the electroantennograms response value of female moths was significantly higher than that of male moths. Dual-choice bioassays demonstrated that the three aromatic compounds have a repellent effect on female P. xylostella. These results suggest that PxylOR11 has a role in mediating the repellent effect of aromatic volatiles on P. xylostella and can be used as a potential target to design novel olfactory regulators controlling P. xylostella.

3.
J Agric Food Chem ; 68(47): 13815-13823, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33151685

RESUMO

Plant volatiles such as floral scent compounds play a crucial role in mediating insect host locating, mate search, and oviposition sites selection. The alfalfa plant bug, Adelphocoris lineolatus (Goeze), is a seriously polyphagous herbivore of alfalfa and cotton that has an obvious preference for flowering host plants. In this study, we focused on the role of an odorant receptor AlinOR59 in the perception of plant volatiles in A. lineolatus. In situ hybridization showed that AlinOR59 was coexpressed with the coreceptor AlinORco in the ORNs cell located in the long curved sensilla trichodea on antennae of both genders. The Xenopus oocytes expression coupled with two-electrode voltage clamp recordings demonstrated that AlinOR59 responded to 15 plant volatiles. In electroantennogram assays, all of the above 15 compounds could excite electrophysiological responses in the antennae of adult bugs. Furthermore, an important floral scent compound, methyl salicylate, was utilized to evaluate the behavioral responses of A. lineolatus. It was found that adult bugs of both genders were significantly attracted to methyl salicylate. Taken together, our findings suggest that AlinOR59 plays a crucial role in the perception of floral scents in A. lineolatus and could be used as a potential target to design novel olfactory regulators for the management of bugs.


Assuntos
Heterópteros , Receptores Odorantes , Animais , Antenas de Artrópodes , Feminino , Flores/química , Proteínas de Insetos/genética , Masculino , Odorantes , Receptores Odorantes/genética , Sensilas
4.
Front Pharmacol ; 8: 907, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379434

RESUMO

Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.

5.
Brain Res ; 1625: 29-38, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26320551

RESUMO

The spinal trigeminal subnucleus caudalis (Vc) receives preferentially nociceptive afferent signals from the orofacial area. Nociceptive stimuli to the orofacial area induce cyclooxygenase both peripherally and centrally, which can synthesize a major prostanoid prostaglandin E2 (PGE2) that implicates in diverse physiological functions. To clarify the roles of centrally-synthesized PGE2 in nociception, effects of exogenous PGE2 on synaptic transmission in the Vc neurons were investigated in the rat brainstem slice. Spontaneously occurring excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) were recorded, respectively, under pharmacological blockade of inhibitory and excitatory transmission by whole-cell patch-clamp mode. Perfusion of PGE2 (1-5 µM) increased the frequency of sIPSCs in a concentration-dependent manner but had no significant effect on the amplitude. Similarly to the effects on sIPSCs, PGE2 increased the sEPSC frequency without any effect on the amplitude. These facilitatory effects of PGE2 on spontaneous synaptic transmissions were blocked by an EP1 antagonist SC19220 but not by an EP4 antagonist AH23848. Electrical stimulation of the trigeminal tract evoked short latency EPSCs (eEPSCs) in the Vc neurons. PGE2 (5 µM) was ineffective on the eEPSCs. The present study demonstrated that PGE2 facilitated spontaneous synaptic transmissions in the Vc neurons through activating the presynaptic EP1 receptors but had no effect on the trigeminal tract-mediated excitatory transmission. These results suggest that centrally-synthesized PGE2 modifies the synaptic transmission in the Vc region, thereby contributing to the processing of nociceptive signals originated from the orofacial area.


Assuntos
Dinoprostona/farmacologia , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/citologia , Animais , Compostos de Bifenilo/farmacologia , Ácido Dibenzo(b,f)(1,4)oxazepina-10(11H)-carboxílico, 8-cloro-, 2-acetilidrazida/farmacologia , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Antagonistas de Prostaglandina/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos
6.
Mol Nutr Food Res ; 58(4): 851-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24273211

RESUMO

SCOPE: GABAA receptors are modulated by Sideritis extracts. The aim of this study was to identify single substances from Sideritis extracts responsible for GABAA receptor modulation. METHODS AND RESULTS: Single volatile substances identified by GC have been tested in two expression systems, Xenopus oocytes and human embryonic kidney cells. Some of these substances, especially carvacrol, were highly potent on GABAA receptors composed of α1ß2 and α1ß2γ2 subunits. All effects measured were independent from the presence of the γ2 subunit. As Sideritis extracts contain a high amount of terpenes, 13 terpenes with similar structure elements were tested in the same way. Following a prescreening on α1ß2 GABAA receptors, a high-throughput method was used for identification of the most effective terpenoid substances on GABA-affinity of α1ß2γ2 receptors expressed in transfected cell lines. Isopulegol, pinocarveol, verbenol, and myrtenol were the most potent modifiers of GABAA receptor function. CONCLUSION: Comparing the chemical structures, the action of terpenes on GABAA receptors is most probably due to the presence of hydroxyl groups and a bicyclic character of the substances tested. We propose an allosteric modulation independent from the γ2 subunit and similar to the action of alcohols and anesthetics.


Assuntos
Extratos Vegetais/química , Receptores de GABA-A/metabolismo , Sideritis/química , Terpenos/química , Terpenos/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa