Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37288813

RESUMO

The axon initial segment (AIS) is a highly specialized neuronal compartment that regulates the generation of action potentials and maintenance of neuronal polarity. Live imaging of the AIS is challenging due to the limited number of suitable labeling methods. To overcome this limitation, we established a novel approach for live labeling of the AIS using unnatural amino acids (UAAs) and click chemistry. The small size of UAAs and the possibility of introducing them virtually anywhere into target proteins make this method particularly suitable for labeling of complex and spatially restricted proteins. Using this approach, we labeled two large AIS components, the 186 kDa isoform of neurofascin (NF186; encoded by Nfasc) and the 260 kDa voltage-gated Na+ channel (NaV1.6, encoded by Scn8a) in primary neurons and performed conventional and super-resolution microscopy. We also studied the localization of epilepsy-causing NaV1.6 variants with a loss-of-function effect. Finally, to improve the efficiency of UAA incorporation, we developed adeno-associated viral (AAV) vectors for click labeling in neurons, an achievement that could be transferred to more complex systems such as organotypic slice cultures, organoids, and animal models.


Assuntos
Segmento Inicial do Axônio , Química Click , Animais , Potenciais de Ação/fisiologia , Aminoácidos/metabolismo , Segmento Inicial do Axônio/metabolismo , Neurônios , Camundongos , Ratos
2.
Muscle Nerve ; 63(1): 141-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33043468

RESUMO

BACKGROUND: The muscle relaxant methocarbamol is widely used for the treatment of muscle spasms and pain syndromes. To elucidate molecular mechanisms of its action, we studied its influence on neuromuscular transmission, on isometric muscle force, and on voltage-gated Na+ channels. METHODS: Neuromuscular transmission was investigated in murine diaphragm-phrenic nerve preparations and muscle force studied on mouse soleus muscles. Nav 1.4 channels and Nav 1.7 channels were functionally expressed in eukaryotic cell lines. RESULTS: Methocarbamol, at 2 mM, decreased the decay of endplate currents, slowed the decay of endplate potentials and reduced tetanic force of soleus muscles. The drug reversibly inhibited current flow through muscular Nav 1.4 channels, while neuronal Nav 1.7 channels were unaffected. CONCLUSIONS: The study provides evidence for peripheral actions of methocarbamol on skeletal muscle. Muscular Na+ channels are a molecular target of methocarbamol. Since Nav 1.7 currents were unaffected, methocarbamol is unlikely to exert its analgesic effect by directly blocking Nav 1.7 channels.


Assuntos
Metocarbamol/farmacologia , Músculos/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos
3.
J Headache Pain ; 20(1): 107, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730442

RESUMO

BACKGROUND: Familial hemiplegic migraine (FHM) is a group of genetic migraine, associated with hemiparesis and aura. Three causative different genes have been identified, all of which are involved in membrane ion transport. Among these, SCN1A encodes the voltage-gated Na+ channel Nav1.1, and FHM caused by mutations of SCN1A is named FHM3. For 7 of the 12 known FHM3-causing SCNA1 mutations functional consequences have been investigated, and even if gain of function effect seems to be a predominant phenotype, for several mutations conflicting results have been obtained and the available data do not reveal a univocal FHM3 pathomechanism. METHODS: To obtain a more complete picture, here, we characterized by patch clamp approach the remaining 5 mutations (Q1489H, I1498M, F1499 L, M1500 V, F1661 L) in heterologous expression systems. RESULTS: With the exception of I1498M, all mutants exhibited the same current density as WT and exhibited a shift of the steady state inactivation to more positive voltages, an accelerated recovery from inactivation, and an increase of the persistent current, revealing that most FHM3 mutations induce a gain of function. We also determined the effect of GS967, a late Na+ current blocker, on the above mentioned mutants as well as on previously characterized ones (L1649Q, L1670 W, F1774S). GS967 inhibited persistent currents of all SCNA1 FMH3-related mutants and dramatically slowed the recovery from fast inactivation of WT and mutants, consistent with the hypothesis that GS967 specifically binds to and thereby stabilizes the fast inactivated state. Simulation of neuronal firing showed that enhanced persistent currents cause an increase of ionic fluxes during action potential repolarization and consequent accumulation of K+ and/or exhaustion of neuronal energy resources. In silico application of GS967 largely reduced net ionic currents in neurons without impairing excitability. CONCLUSION: In conclusion, late Na+ current blockers appear a promising specific pharmacological treatment of FHM3.


Assuntos
Transtornos de Enxaqueca/fisiopatologia , Enxaqueca com Aura/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Piridinas/farmacologia , Triazóis/farmacologia , Potenciais de Ação , Epilepsia , Células HEK293 , Humanos , Transtornos de Enxaqueca/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/química , Neurônios/metabolismo , Sódio
4.
Cell Physiol Biochem ; 45(2): 446-457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29402835

RESUMO

BACKGROUND/AIMS: Islet beta cells (ß-cells) are unique cells that play a critical role in glucose homeostasis by secreting insulin in response to increased glucose levels. Voltage-gated ion channels in ß-cells, such as K+ and Ca2+ channels, contribute to insulin secretion. The response of voltage-gated Na+ channels (VGSCs) in ß-cells to the changes in glucose levels remains unknown. This work aims to determine the role of extracellular glucose on the regulation of VGSC. METHODS: The effect of glucose on VGSC currents (INa) was investigated in insulin-secreting ß-cell line (INS-1) cells of rats using whole-cell patch clamp techniques, and the effects of glucose on insulin content and cell viability were determined using Enzyme-Linked Immunosorbent Assay (ELISA) and Methylthiazolyldiphenyl-tetrazolium Bromide (MTT) assay methods respectively. RESULTS: Our results show that extracellular glucose application can inhibit the peak of INa in a concentration-dependent manner. Glucose concentration of 18 mM reduced the amplitude of INa, suppressed the INa of steady-state activation, shifted the steady-state inactivation curves of INa to negative potentials, and prolonged the time course of INa recovery from inactivation. Glucose also enhanced the activity-dependent attenuation of INa and reduced the fraction of activated channels. Furthermore, 18 mM glucose or low concentration of tetrodotoxin (TTX, a VGSC-specific blocker) partially inhibited the activity of VGSC and also improved insulin synthesis. CONCLUSION: These results revealed that extracellular glucose application enhances the insulin synthesis in INS-1 cells and the mechanism through the partial inhibition on INa channel is involved. Our results innovatively suggest that VGSC plays a vital role in modulating glucose homeostasis.


Assuntos
Potenciais Evocados/efeitos dos fármacos , Glucose/farmacologia , Insulina/análise , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Técnicas de Patch-Clamp , Ratos , Tetrodotoxina/toxicidade
5.
Mar Drugs ; 15(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726749

RESUMO

Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.


Assuntos
Ciguatera/metabolismo , Toxinas Marinhas/metabolismo , Oxocinas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Ciguatoxinas/metabolismo , Dinoflagellida/metabolismo , Humanos , Ligantes
6.
Harmful Algae ; 57(B): 26-34, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27616973

RESUMO

The Makah Tribe of Neah Bay, Washington, has historically relied on the subsistence harvest of coastal seafood, including shellfish, which remains an important cultural and ceremonial resource. Tribal legend describes visitors from other tribes that died from eating shellfish collected on Makah lands. These deaths were believed to be caused by paralytic shellfish poisoning, a human illness caused by ingestion of shellfish contaminated with saxitoxins, which are produced by toxin-producing marine dinoflagellates on which the shellfish feed. These paralytic shellfish toxins include saxitoxin, a potent Na+ channel antagonist that binds to the pore region of voltage gated Na+ channels. Amino acid mutations in the Na+ channel pore have been demonstrated to confer resistance to saxitoxin in softshell clam populations exposed to paralytic shellfish toxins present in their environment. Because of the notion of resistance to paralytic shellfish toxins, we aimed to determine if a resistance strategy was possible in humans with historical exposure to toxins in shellfish. We collected, extracted and purified DNA from buccal swabs of 83 volunteer Makah tribal members and sequenced the skeletal muscle Na+ channel (Nav1.4) at nine loci to characterize potential mutations in the relevant saxitoxin binding regions. No mutations of these specific regions were identified after comparison to a reference sequence. This study suggests that any resistance of Makah Tribal members to saxitoxin is not a function of Nav1.4 modification but may be due to mutations in neuronal or cardiac sodium channels or some other mechanism unrelated to sodium channel function.

7.
Acta Biochim Biophys Sin (Shanghai) ; 47(9): 680-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206582

RESUMO

Voltage-gated sodium channel (VGSC) activity enhances cell behaviors related to metastasis, such as motility, invasion, and oncogene expression. Neonatal alternative splice form of Nav1.5 isoform is expressed in metastatic breast cancers. Furthermore, aberrant Notch signaling pathway can induce oncogenesis and may promote the progression of breast cancers. In this study, we aimed to analyze the effect of the nNav1.5 inhibitor phenytoin and Notch signal inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester (DAPT) on triple negative breast cancer cell line (MDA-MB-231) via inhibition of nNav1.5 VGSC activity and Notch signaling, respectively. In order to determine the individual and combined effects of these inhibitors, the 4-[3-(4-iyodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) test, wound healing assay, and zymography were performed to detect the proliferation, lateral motility, and matrix metalloproteinase-9 (MMP9) activity, respectively. The expressions of nNav1.5, Notch4, MMP9, and tissue inhibitor of metalloproteinases-1 (TIMP1) were also detected by quantitative real-time reverse transcriptase-polymerase chain reaction. DAPT caused an antiproliferative effect when the doses were higher than 10 µM, whereas phenytoin showed no inhibitory action either alone or in combination with DAPT on the MDA-MB-231 cells. Furthermore, it was found that the lateral motility was inhibited by both inhibitors; however, this inhibitory effect was partially rescued when they were used in combination. Meanwhile, the results showed that the MMP9 activity and the ratio of MMP9 mRNA to TIMP1 mRNA were only decreased by DAPT. Thus, we conclude that the combined effect of DAPT and phenytoin is not as beneficial as using DAPT alone on MDA-MB-231 breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Dipeptídeos/farmacologia , Fenitoína/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Feminino , Humanos , Técnicas In Vitro , Metaloproteinase 9 da Matriz/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Receptor Notch4 , Receptores Notch/genética , Inibidor Tecidual de Metaloproteinase-1/genética
8.
Int J Cancer ; 135(10): 2338-51, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24729314

RESUMO

Voltage-gated Na(+) channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller ß subunits. The ß subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). ß1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. ß1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/ß1 protein were up-regulated in BCa specimens, compared with normal breast tissue. ß1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. ß1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and ß1 over-expressing tumour cells had an elongate morphology. In vitro, ß1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. ß1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na(+) current, thus replicating the mechanism by which ß1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, ß1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for ß1 in tumour growth and metastasis in vivo. We propose that ß1 warrants further study as a potential biomarker and targeting ß1-mediated adhesion interactions may have value as a novel anti-cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Neuritos/patologia , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Western Blotting , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Técnicas Imunoenzimáticas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neuritos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Neurobiol Dis ; 60: 61-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23969238

RESUMO

Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.


Assuntos
Axônios/metabolismo , Axônios/patologia , Calpaína/fisiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Humanos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
10.
Biochem Biophys Rep ; 34: 101468, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37102121

RESUMO

Linalool, an essential oil component of lavender is commonly used in fragrances. It is known that linalool has anxiolytic, sedative, and analgesic actions. However, the mechanism of its analgesic action has not yet been fully clarified. Pain signals elicited by the activation of nociceptors on peripheral neurons are transmitted to the central nervous system. In the present study, we investigated the effects of linalool on transient receptor potential (TRP) channels and voltage-gated channels, both of which are important for pain signaling via nociceptors in somatosensory neurons. For detection of channel activity, the intracellular Ca2+ concentration ([Ca2+]i) was measured using a Ca2+-imaging system, and membrane currents were recorded using the whole-cell patch-clamp technique. Analgesic actions were also examined in vivo. In mouse sensory neurons linalool at concentrations that did not induce [Ca2+]i increases did not affect [Ca2+]i responses to capsaicin and acids, TRPV1 agonists, but suppressed those induced by allyl isothiocyanate (AITC) and carvacrol, TRPA1 agonists. Similar inhibitory effects of linalool were observed in cells that heterologously expressed TRPA1. Linalool attenuated the [Ca2+]i increases induced by KCl and voltage-gated Ca2+ currents but only slightly suppressed voltage-gated Na+currents in mouse sensory neurons. Linalool diminished TRPA1-mediated nociceptive behaviors. The present data suggest that linalool exerts an analgesic action via the suppression of nociceptive TRPA1 and voltage-gated Ca2+ channels.

11.
Front Neurosci ; 17: 1294567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099204

RESUMO

Cocaine use disorder (CUD) is a prevalent neuropsychiatric disorder with few existing treatments. Thus, there is an unmet need for the identification of new pharmacological targets for CUD. Previous studies using environmental enrichment versus isolation paradigms have found that the latter induces increased cocaine self-administration with correlative increases in the excitability of medium spiny neurons (MSN) of the nucleus accumbens shell (NAcSh). Expanding upon these findings, we sought in the present investigation to elucidate molecular determinants of these phenomena. To that end, we first employed a secondary transcriptomic analysis and found that cocaine self-administration differentially regulates mRNA for fibroblast growth factor 13 (FGF13), which codes for a prominent auxiliary protein of the voltage-gated Na+ (Nav) channel, in the NAcSh of environmentally enriched rats (i.e., resilient behavioral phenotype) compared to environmentally isolated rats (susceptible phenotype). Based upon this finding, we used in vivo genetic silencing to study the causal functional and behavioral consequences of knocking down FGF13 in the NAcSh. Functional studies revealed that knockdown of FGF13 in the NAcSh augmented excitability of MSNs by increasing the activity of Nav channels. These electrophysiological changes were concomitant with a decrease in cocaine demand elasticity (i.e., susceptible phenotype). Taken together, these data support FGF13 as being protective against cocaine self-administration, which positions it well as a pharmacological target for CUD.

12.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295666

RESUMO

Voltage-gated sodium (Na+) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na+ influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na+ channel (Nav1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Nav1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K+ channels on the AP shape, we co-expressed either Kv1.2 or hERG with one of the Nav1.5-ChR2 fusions. As expected, both delayed rectifier K+ channels shortened AP duration significantly. Kv1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na+ current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na+ channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering.

13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(7): 1579-1588, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33738513

RESUMO

Aloperine (ALO), a quinolizidine alkaloid extracted from Sophora alopecuroides L., modulates hypertension, ventricular remodeling, and myocardial ischemia. However, few studies have evaluated the effects of ALO on other cardiovascular parameters. Accordingly, in this study, we used a rat model of aconitine-induced ventricular arrhythmia to assess the effects of ALO. Notably, ALO pretreatment delayed the onset of ventricular premature and ventricular tachycardia and reduced the incidence of fatal ventricular fibrillation. Moreover, whole-cell patch-clamp assays in rats' ventricular myocyte showed that ALO (3, 10, and 30 µM) significantly reduced the peak sodium current density of voltage-gated Na+ channel currents (INa) in a concentration-dependent manner. The gating kinetics characteristics showed that the steady-state activation and recovery curve were shifted in positive direction along the voltage axis, respectively, and the steady-state inactivation curve was shifted in negative direction along the voltage axis, i.e., which was similar to the inhibitory effects of amiodarone. These results indicated that ALO had anti-arrhythmic effects, partly attributed to INa inhibition. ALO may act as a class I sodium channel anti-arrhythmia agent.


Assuntos
Antiarrítmicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Quinolizidinas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Animais Recém-Nascidos , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Masculino , Miócitos Cardíacos/fisiologia , Quinolizidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
14.
J Vet Med Sci ; 83(6): 997-1003, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33952782

RESUMO

Changes in electrophysiological properties, such as ion channel expression and activity, are closely related to arrhythmogenesis during heart failure (HF). However, a causative factor for the electrical remodeling in HF has not been determined. Periostin (POSTN), a matricellular protein, is increased in heart tissues of patients with HF. In the present study, we investigated whether a single injection of POSTN affects the electrophysiological properties in rat ventricles. After male Wistar rats were intravenously injected with recombinant rat POSTN (64 µg/kg, 24 hr), electrocardiogram (ECG) was recorded. Whole-cell patch clamp was performed to measure action potential (AP) and Na+ current (INa) in isolated ventricular myocytes. Protein expression of cardiac voltage-gated Na+ channel (NaV1.5) in isolated ventricles was examined by Western blotting. In ECG, POSTN-injection significantly increased RS height. POSTN-injection significantly delayed time to peak in AP and decreased INa in the isolated ventricular myocytes. POSTN-injection decreased NaV1.5 expression in the isolated ventricles. It was confirmed that POSTN (1 µg/ml, 24 hr) decreased INa and NaV1.5 protein expression in neonatal rat ventricular myocytes. This study for the first time demonstrated that a single injection of POSTN in rats decreased INa by suppressing NaV1.5 expression in the ventricular myocytes, which was accompanied by a prolongation of time to peak in AP and an increase of RS height in ECG.


Assuntos
Ventrículos do Coração , Miócitos Cardíacos , Potenciais de Ação , Animais , Masculino , Ratos , Ratos Wistar , Sódio
15.
Front Pharmacol ; 11: 555047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123007

RESUMO

Eslicarbazepine acetate (ESL) is a dibenzazepine anticonvulsant approved as adjunctive treatment for partial-onset epileptic seizures. Following first pass hydrolysis of ESL, S-licarbazepine (S-Lic) represents around 95% of circulating active metabolites. S-Lic is the main enantiomer responsible for anticonvulsant activity and this is proposed to be through the blockade of voltage-gated Na+ channels (VGSCs). ESL and S-Lic both have a voltage-dependent inhibitory effect on the Na+ current in N1E-115 neuroblastoma cells expressing neuronal VGSC subtypes including Nav1.1, Nav1.2, Nav1.3, Nav1.6, and Nav1.7. ESL has not been associated with cardiotoxicity in healthy volunteers, although a prolongation of the electrocardiographic PR interval has been observed, suggesting that ESL may also inhibit cardiac Nav1.5 isoform. However, this has not previously been studied. Here, we investigated the electrophysiological effects of ESL and S-Lic on Nav1.5 using whole-cell patch clamp recording. We interrogated two model systems: (1) MDA-MB-231 metastatic breast carcinoma cells, which endogenously express the "neonatal" Nav1.5 splice variant, and (2) HEK-293 cells stably over-expressing the "adult" Nav1.5 splice variant. We show that both ESL and S-Lic inhibit transient and persistent Na+ current, hyperpolarise the voltage-dependence of fast inactivation, and slow the recovery from channel inactivation. These findings highlight, for the first time, the potent inhibitory effects of ESL and S-Lic on the Nav1.5 isoform, suggesting a possible explanation for the prolonged PR interval observed in patients on ESL treatment. Given that numerous cancer cells have also been shown to express Nav1.5, and that VGSCs potentiate invasion and metastasis, this study also paves the way for future investigations into ESL and S-Lic as potential invasion inhibitors.

16.
Biomed Pharmacother ; 101: 572-578, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29514130

RESUMO

Our previous work showed that polysaccharide isolated from Portulaca oleracea L. (POP) has an insulinotropic effect. The voltage-gated Na+ channel (VGSC) in the excitement phase plays an important role. This work aims to study the effect of POP on the voltage-gated Na+ channel current (INa) and its channel dynamic characteristics in insulin-secreting ß-cell line (INS-1) cells of rat. Our results revealed that POP can inhibit the amplitude of INa and improve cell survival in a concentration-dependent manner. POP concentration of 0.5 mg mL-1 reduced the amplitude of INa, suppressed the INa of steady-state activation, shifted the steady-state inactivation curves of INa to negative potentials, prolonged the time course of INa recovery from inactivation, and enhanced the activity-dependent attenuation of INa. Furthermore, 0.5 mg mL-1 POP or low concentration of tetrodotoxin (TTX, a VGSC-specific blocker) partially inhibited INa and also improved insulin synthesis and cell survival. Collectively, these results revealed that POP protects INS-1 cells and enhances the insulin synthesis in INS-1 cells, and the mechanism through the partial inhibition on INa channel is strongly recommended.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Polissacarídeos/farmacologia , Portulaca , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Insulina/metabolismo , Secreção de Insulina , Polissacarídeos/isolamento & purificação , Ratos , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
17.
Harmful Algae ; 57(Pt B): 26-34, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-28918888

RESUMO

The Makah Tribe of Neah Bay, Washington, has historically relied on the subsistence harvest of coastal seafood, including shellfish, which remains an important cultural and ceremonial resource. Tribal legend describes visitors from other tribes that died from eating shellfish collected on Makah lands. These deaths were believed to be caused by paralytic shellfish poisoning, a human illness caused by ingestion of shellfish contaminated with saxitoxins, which are produced by toxin-producing marine dinoflagellates on which the shellfish feed. These paralytic shellfish toxins include saxitoxin, a potent Na+ channel antagonist that binds to the pore region of voltage gated Na+ channels. Amino acid mutations in the Na+ channel pore have been demonstrated to confer resistance to saxitoxin in softshell clam populations exposed to paralytic shellfish toxins present in their environment. Because of the notion of resistance to paralytic shellfish toxins, the study aimed to determine if a resistance strategy was possible in humans with historical exposure to toxins in shellfish. We collected, extracted and purified DNA from buccal swabs of 83 volunteer Makah tribal members and sequenced the skeletal muscle Na+ channel (Nav1.4) at nine loci to characterize potential mutations in the relevant saxitoxin binding regions. No mutations of these specific regions were identified after comparison to a reference sequence. This study suggests that any resistance of Makah tribal members to saxitoxin, if present, is not a function of Nav1.4 modification, but may be due to mutations in neuronal or cardiac sodium channels, or some other mechanism unrelated to sodium channel function.


Assuntos
Indígenas Norte-Americanos/genética , Intoxicação por Frutos do Mar/genética , Canais de Sódio/genética , Animais , Resistência à Doença/genética , Humanos , Mutação/genética , Saxitoxina/toxicidade , Frutos do Mar/toxicidade , Washington
18.
Neuroscience ; 315: 246-58, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26704635

RESUMO

Retinal bipolar cells are second-order neurons in the visual system, which initiate multiple image feature-based neural streams. Among more than ten types of bipolar cells, type-5 cells are thought to play a role in motion detection pathways. Multiple subsets of type-5 cells have been reported; however, detailed characteristics of each subset have not yet been elucidated. Here, we found that they exhibit distinct morphological features as well as unique voltage-gated channel expression. We have conducted electrophysiological and immunohistochemical analysis of retinal bipolar cells. We defined type-5 cells by their axon terminal ramification in the inner plexiform layer between the border of ON/OFF sublaminae and the ON choline acetyltransferase (ChAT) band. We found three subsets of type-5 cells: XBCs had the widest axon terminals that stratified at a close approximation of the ON ChAT band as well as exhibiting large voltage-gated Na(+) channel activity, type-5-1 cells had compact terminals and no Na(+) channel activity, and type-5-2 cells contained umbrella-shaped terminals as well as large voltage-gated Na(+) channel activity. Hyperpolarization-activated cyclic nucleotide-gated (HCN) currents were also evoked in all type-5 bipolar cells. We found that XBCs and type-5-2 cells exhibited larger HCN currents than type-5-1 cells. Furthermore, the former two types showed stronger HCN1 expression than the latter. Our previous observations (Ichinose et al., 2014) match the current study: low temporal tuning cells that we named 5S corresponded to 5-1 in this study, while high temporal tuning 5f cells from the previous study corresponded to 5-2 cells. Taken together, we found three subsets of type-5 bipolar cells based on their morphologies and physiological features.


Assuntos
Células Bipolares da Retina/citologia , Células Bipolares da Retina/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Western Blotting , Colina O-Acetiltransferase/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Imuno-Histoquímica , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Células Bipolares da Retina/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Técnicas de Cultura de Tecidos
19.
Oncotarget ; 6(32): 32914-29, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26452220

RESUMO

Voltage-gated Na+ channels (VGSCs) mediate action potential firing and regulate adhesion and migration in excitable cells. VGSCs are also expressed in cancer cells. In metastatic breast cancer (BCa) cells, the Nav1.5 α subunit potentiates migration and invasion. In addition, the VGSC-inhibiting antiepileptic drug phenytoin inhibits tumor growth and metastasis. However, the functional activity of Nav1.5 and its specific contribution to tumor progression in vivo has not been delineated. Here, we found that Nav1.5 is up-regulated at the protein level in BCa compared with matched normal breast tissue. Na+ current, reversibly blocked by tetrodotoxin, was retained in cancer cells in tumor tissue slices, thus directly confirming functional VGSC activity in vivo. Stable down-regulation of Nav1.5 expression significantly reduced tumor growth, local invasion into surrounding tissue, and metastasis to liver, lungs and spleen in an orthotopic BCa model. Nav1.5 down-regulation had no effect on cell proliferation or angiogenesis within the in tumors, but increased apoptosis. In vitro, Nav1.5 down-regulation altered cell morphology and reduced CD44 expression, suggesting that VGSC activity may regulate cellular invasion via the CD44-src-cortactin signaling axis. We conclude that Nav1.5 is functionally active in cancer cells in breast tumors, enhancing growth and metastatic dissemination. These findings support the notion that compounds targeting Nav1.5 may be useful for reducing metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Transgênicos , Metástase Neoplásica
20.
Neural Regen Res ; 10(4): 610-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26170823

RESUMO

Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour exposure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na(+) channels using a patch-clamp technique. Voltage-clamp recording results demonstrated that interleukin-6 suppressed Na(+) currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na(+) channels in rat cortical neurons by interleukin-6 is time- and dose-dependent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa