Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(48): e2208353119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409890

RESUMO

Descending motor drive and somatosensory feedback play important roles in modulating muscle activity. Numerous studies have characterized the organization of neuronal connectivity in which descending motor pathways and somatosensory afferents converge on spinal motor neurons as a final common pathway. However, how inputs from these two pathways are integrated into spinal motor neurons to generate muscle activity during actual motor behavior is unknown. Here, we simultaneously recorded activity in the motor cortices (MCx), somatosensory afferent neurons, and forelimb muscles in monkeys performing reaching and grasping movements. We constructed a linear model to explain the instantaneous muscle activity using the activity of MCx (descending input) and peripheral afferents (afferent input). Decomposition of the reconstructed muscle activity into each subcomponent indicated that muscle activity before movement onset could first be explained by descending input from mainly the primary motor cortex and muscle activity after movement onset by both descending and afferent inputs. Descending input had a facilitative effect on all muscles, whereas afferent input had a facilitative or suppressive effect on each muscle. Such antagonistic effects of afferent input can be explained by reciprocal effects of the spinal reflex. These results suggest that descending input contributes to the initiation of limb movement, and this initial movement subsequently affects muscle activity via the spinal reflex in conjunction with the continuous descending input. Thus, spinal motor neurons are subjected to temporally organized modulation by direct activation through the descending pathway and the lagged action of the spinal reflex during voluntary limb movement.


Assuntos
Córtex Motor , Movimento , Animais , Movimento/fisiologia , Neurônios Motores/fisiologia , Córtex Motor/fisiologia , Reflexo/fisiologia , Extremidade Superior
2.
Annu Rev Neurosci ; 39: 81-101, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27023730

RESUMO

Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior.


Assuntos
Interneurônios/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Animais , Humanos , Rede Nervosa/fisiologia
3.
Cereb Cortex ; 33(5): 2315-2327, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35641143

RESUMO

The study investigates the role of dorsal premotor cortex (PMd) in generating predicted sensory consequences of movements, i.e. corollary discharges. In 2 different sessions, we disrupted PMd and parietal hand's multisensory integration site (control area) with transcranial magnetic stimulation (TMS) during a finger-sequence-tapping motor task. In this TMS sham-controlled design, the task was performed with normal sensory feedback and during upper-limb ischemic nerve block (INB), in a time-window where participants moved without somatosensation. Errors and movement timing (objective measures) and ratings about movement perception (subjective measures) were collected. We found that INB overall worsens objective and subjective measures, but crucially in the PMd session, the absence of somatosensation together with TMS disruption induced more errors, less synchronized movements, and increased subjective difficulty ratings as compared with the parietal control session (despite a carryover effect between real and sham stimulation to be addressed in future studies). Contrarily, after parietal area interference session, when sensory information is already missing due to INB, motor performance was not aggravated. Altogether these findings suggest that the loss of actual (through INB) and predicted (through PMd disruption) somatosensory feedback degraded motor performance and perception, highlighting the crucial role of PMd in generating corollary discharge.


Assuntos
Córtex Motor , Bloqueio Nervoso , Humanos , Retroalimentação Sensorial , Mãos , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana
4.
J Neuroeng Rehabil ; 21(1): 102, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877589

RESUMO

BACKGROUND: Investigating the spatial distribution of muscle activity would facilitate understanding the underlying mechanism of spasticity. The purpose of this study is to investigate the characteristics of spastic muscles during passive stretch and active contraction by high-density surface electromyography (HD-sEMG). METHODS: Fourteen spastic hemiparetic subjects and ten healthy subjects were recruited. The biceps brachii (BB) muscle activity of each subject was recorded by HD-sEMG during passive stretch at four stretch velocities (10, 60, 120, 180˚/s) and active contraction at three submaximal contraction levels (20, 50, 80%MVC). The intensity and spatial distribution of the BB activity were compared by the means of two-way analysis of variance, independent sample t-test, and paired sample t-test. RESULTS: Compared with healthy subjects, spastic hemiparetic subjects showed significantly higher intensity with velocity-dependent heterogeneous activation during passive stretch and more lateral and proximal activation distribution during active contraction. In addition, spastic hemiparetic subjects displayed almost non-overlapping activation areas during passive stretch and active contraction. The activation distribution of passive stretch was more distal when compared with the active contraction. CONCLUSIONS: These alterations of the BB activity could be the consequence of deficits in the descending central control after stroke. The complementary spatial distribution of spastic BB activity reflected their opposite motor units (MUs) recruitment patterns between passive stretch and active contraction. This HD-sEMG study provides new neurophysiological evidence for the spatial relationship of spastic BB activity between passive stretch and active contraction, advancing our knowledge on the mechanism of spasticity. TRIAL REGISTRATION: ChiCTR2000032245.


Assuntos
Eletromiografia , Contração Muscular , Espasticidade Muscular , Músculo Esquelético , Acidente Vascular Cerebral , Humanos , Masculino , Espasticidade Muscular/fisiopatologia , Espasticidade Muscular/etiologia , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Músculo Esquelético/fisiopatologia , Contração Muscular/fisiologia , Adulto , Idoso
5.
J Neurosci ; 42(5): 777-788, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34732524

RESUMO

A long-standing question in systems neuroscience is to what extent task-relevant features of neocortical processing are localized or distributed. Coordinated activity across the neocortex has been recently shown to drive complex behavior in the mouse, while activity in selected areas is canonically associated with specific functions (e.g., movements in the case of the motor cortex). Reach-to-grasp (RtG) movements are known to be dependent on motor circuits of the neocortex; however, the global activity of the neocortex during these movements has been largely unexplored in the mouse. Here, we characterized, using wide-field calcium imaging, these neocortex-wide dynamics in mice of either sex engaging in an RtG task. We demonstrate that, beyond motor regions, several areas, such as the visual and the retrosplenial cortices, also increase their activity levels during successful RtGs, and homologous regions across the ipsilateral hemisphere are also involved. Functional connectivity among neocortical areas increases transiently around movement onset and decreases during movement. Despite this global phenomenon, neural activity levels correlate with kinematics measures of successful RtGs in sensorimotor areas only. Our findings establish that distributed and localized neocortical dynamics co-orchestrate efficient control of complex movements.SIGNIFICANCE STATEMENT Mammals rely on reaching and grasping movements for fine-scale interactions with the physical world. In the mouse, the motor cortex is critical for the execution of such behavior, yet little is known about the activity patterns across neocortical areas. Using the mesoscale-level networks as a model of cortical processing, we investigated the hypothesis that areas beyond the motor regions could participate in RtG planning and execution, and indeed a large network of areas is involved while performing RtGs. Movement kinematics correlates mostly with neural activity in sensorimotor areas. By demonstrating that distributed and localized neocortical dynamics for the execution of fine movements coexist in the mouse neocortex during RtG, we offer an unprecedented view on the neocortical correlates of mammalian motor control.


Assuntos
Força da Mão/fisiologia , Movimento/fisiologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neocórtex/química , Rede Nervosa/química
6.
Exp Brain Res ; 241(10): 2395-2407, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634132

RESUMO

Movement goals are an essential component of motor planning, altering voluntary and involuntary motor actions. While there have been many studies of motor planning, it is unclear if motor goals influence voluntary and involuntary movements at similar latencies. The objectives of this study were to determine how long it takes to prepare a motor action and to compare this time for voluntary and involuntary movements. We hypothesized a prepared motor action would influence voluntarily and involuntarily initiated movements at the same latency. We trained subjects to reach with a forced reaction time paradigm and used a startling acoustic stimulus (SAS) to trigger involuntary initiation of the same reaches. The time available to prepare was controlled by varying when one of four reach targets was presented. Reach direction was used to evaluate accuracy. We quantified the time between target presentation and the cue or trigger for movement initiation. We found that reaches were accurately initiated when the target was presented 48 ms before the SAS and 162 ms before the cue to voluntarily initiate movement. While the SAS precisely controlled the latency of movement onset, voluntary reach onset was more variable. We, therefore, quantified the time between target presentation and movement onset and found no significant difference in the time required to plan reaches initiated voluntarily or involuntarily (∆ = 8 ms, p = 0.2). These results demonstrate that the time required to plan accurate reaches is similar regardless of if they are initiated voluntarily or triggered involuntarily. This finding may inform the understanding of neural pathways governing storage and access of motor plans.


Assuntos
Discinesias , Reflexo de Sobressalto , Humanos , Movimento , Tempo de Reação , Cognição , Estimulação Acústica , Eletromiografia
7.
Biomed Eng Online ; 22(1): 63, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355651

RESUMO

BACKGROUND: The underlying motivation of this work is to demonstrate that artificial muscle activity of known and unknown motion can be generated based on motion parameters, such as angular position, acceleration, and velocity of each joint (or the end-effector instead), which are similarly represented in our brains. This model is motivated by the known motion planning process in the central nervous system. That process incorporates the current body state from sensory systems and previous experiences, which might be represented as pre-learned inverse dynamics that generate associated muscle activity. METHODS: We develop a novel approach utilizing recurrent neural networks that are able to predict muscle activity of the upper limbs associated with complex 3D human arm motions. Therefore, motion parameters such as joint angle, velocity, acceleration, hand position, and orientation, serve as input for the models. In addition, these models are trained on multiple subjects (n=5 including , 3 male in the age of 26±2 years) and thus can generalize across individuals. In particular, we distinguish between a general model that has been trained on several subjects, a subject-specific model, and a specific fine-tuned model using a transfer learning approach to adapt the model to a new subject. Estimators such as mean square error MSE, correlation coefficient r, and coefficient of determination R2 are used to evaluate the goodness of fit. We additionally assess performance by developing a new score called the zero-line score. The present approach was compared with multiple other architectures. RESULTS: The presented approach predicts the muscle activity for previously through different subjects with remarkable high precision and generalizing nicely for new motions that have not been trained before. In an exhausting comparison, our recurrent network outperformed all other architectures. In addition, the high inter-subject variation of the recorded muscle activity was successfully handled using a transfer learning approach, resulting in a good fit for the muscle activity for a new subject. CONCLUSIONS: The ability of this approach to efficiently predict muscle activity contributes to the fundamental understanding of motion control. Furthermore, this approach has great potential for use in rehabilitation contexts, both as a therapeutic approach and as an assistive device. The predicted muscle activity can be utilized to guide functional electrical stimulation, allowing specific muscles to be targeted and potentially improving overall rehabilitation outcomes.


Assuntos
Redes Neurais de Computação , Extremidade Superior , Humanos , Masculino , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Movimento/fisiologia , Músculos , Eletromiografia/métodos
8.
Neuroimage ; 251: 118975, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134408

RESUMO

We aimed to test the idea that rhythmic transcranial magnetic stimulation (TMS) entrains cortical oscillations. To do this, we examined oscillatory responses in the electroencephalogram (EEG) to TMS over primary motor cortex. In particular, we contrasted responses to real TMS with those to sham TMS in order to dissociate the contributions of direct (transcranial) activation and indirect activation (via auditory/sensory input) of the brain. We first showed that real single pulse TMS elicited a brief (∼200 ms) increase in sensorimotor beta power whose frequency closely matched that of each individual's post-movement beta rebound (PMBR, ∼18 Hz). Sham TMS triggered minimal oscillatory activity. Together this implies that real TMS interacts with endogenous oscillations via direct brain activation. We then showed that although trains of real rhythmic TMS delivered at each individuals PMBR frequency produced a brief increase in beta power at the same frequency, real arrhythmic TMS also elicited an equivalent increase in beta. The implication is that the oscillatory response is independent of the rhythm of stimulation. By contrast, sham stimulation elicited minimal activity in the beta band, and the responses to rhythmic and arrhythmic sham TMS were broadly similar, showing that sham rhythmic stimulation did not produce entrainment via sensory rhythms. Together, the data demonstrate that the beta oscillatory response of M1 to real TMS predominantly reflects direct activation of the underlying cortex. However, the data do not support the notion of rhythmic TMS enhancing oscillatory activity via entrainment-like mechanisms, at least within the constraints of the current experimental set-up.


Assuntos
Córtex Motor , Ritmo beta , Eletroencefalografia , Potencial Evocado Motor/fisiologia , Frequência Cardíaca , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana
9.
J Neurophysiol ; 127(4): 1147-1158, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320034

RESUMO

Sensory feedback through spinal interneurons contributes to plantar flexor muscle activity during walking, but it is unknown whether this is also the case during nonlocomotor movements. Here, we explored the effect of temporary reduction of sensory feedback to ankle plantar flexors during voluntary contraction in sitting subjects. Thirteen healthy adults (mean age 32 yr) were seated with the right leg attached to a foot plate which could be moved in dorsi- or plantarflexion direction by a computer-controlled motor. EMG was recorded from the tibialis anterior (TA) and soleus (Sol) muscles. During static plantar flexion, while the plantar flexors were slowly stretched, a sudden plantar flexion caused a decline in Sol EMG at the same latency as the stretch reflex. This decline in EMG activity was still observed when transmission from dorsiflexors was blocked. It disappeared when transmission from ankle plantar flexors was also blocked. The same quick plantarflexion failed to produce a decline in EMG activity at the latency of the stretch reflex in the absence of slow stretch of the plantar flexors. Instead, a decline in EMG activity was observed 15-20 ms later. This decline disappeared following block of transmission from antagonists, suggesting that reciprocal inhibition was involved. These findings show that unload of ankle plantar flexors does not cause a similar drop in Sol EMG during voluntary contraction as during walking. This implies that sensory feedback through spinal interneurons only contributes little to the neural drive to plantar flexor muscles during human voluntary contraction in sitting subjects.NEW & NOTEWORTHY Sensory feedback through spinal reflex pathways makes only a minor contribution to neural drive to muscles during voluntary ankle plantar flexion. This differs distinctly from observations during walking and suggests that the neural drive to ankle plantar flexors during voluntary contraction do not rely on sensory feedback through similar spinal interneuronal networks as during walking. In line with animal studies this suggests that the integration of sensory feedback in CNS is task specific.


Assuntos
Retroalimentação Sensorial , Reflexo H , Tornozelo/fisiologia , Eletromiografia , Reflexo H/fisiologia , Humanos , Contração Muscular , Músculo Esquelético/fisiologia , Caminhada/fisiologia
10.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236314

RESUMO

A novel wearable multi-sensor data glove system is developed to explore the relation between finger spasticity and voluntary movement in patients with stroke. Many stroke patients suffer from finger spasticity, which is detrimental to their manual dexterity. Diagnosing and assessing the degrees of spasticity require neurological testing performed by trained professionals to estimate finger spasticity scores via the modified Ashworth scale (MAS). The proposed system offers an objective, quantitative solution to assess the finger spasticity of patients with stroke and complements the manual neurological test. In this work, the hardware and software components of this system are described. By requiring patients to perform five designated tasks, biomechanical measurements including linear and angular speed, acceleration, and pressure at every finger joint and upper limb are recorded, making up more than 1000 features for each task. We conducted a preliminary clinical test with 14 subjects using this system. Statistical analysis is performed on the acquired measurements to identify a small subset of features that are most likely to discriminate a healthy patient from patients suffering from finger spasticity. This encouraging result validates the feasibility of this proposed system to quantitatively and objectively assess finger spasticity.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Dedos , Humanos , Espasticidade Muscular/diagnóstico , Acidente Vascular Cerebral/diagnóstico , Extremidade Superior
11.
J Neurophysiol ; 126(3): 957-966, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406891

RESUMO

Having observed that electrical spinal cord stimulation and training enabled four patients with paraplegia with motor complete paralysis to regain voluntary leg movement, the underlying mechanisms involved in forming the newly established supraspinal-spinal functional connectivity have become of great interest. van den Brand et al. (Science 336: 1182-1185, 2012) subsequently, demonstrated the recovery, in response to spinal electro-neuromodulation and locomotor training, of voluntary stepping of the lower limbs in rats that received a lesion that is assumed to eliminate all long-descending cortical axons that project to lumbosacral segments. Here, we used a similar spinal lesion in rats to eliminate long-descending axons to determine whether a novel, trained motor behavior triggered by a unique auditory cue learned before a spinal lesion, could recover after the lesion. Hindlimb stepping recovered 1 mo after the spinal injury, but only after 2 mo, the novel and unique audio-triggered behavior was recovered, meaning that not only was a novel connectivity formed but also further evidence suggested that this highly unique behavioral response was independent of the recovery of the circuitry that generated stepping. The unique features of the newly formed supraspinal-spinal connections that mediated the recovery of the trained behavior is consistent with a guidance mechanism(s) that are highly use dependent.NEW & NOTEWORTHY Electrical spinal cord stimulation has enabled patients with paraplegia to regain voluntary leg movement, and so the underlying mechanisms involved in this recovery are of great interest. Here, we demonstrate in rodents the recovery of trained motor behavior after a spinal lesion. Rodents were trained to kick their right hindlimb in response to an auditory cue. This behavior recovered 2 mo after the paralyzing spinal cord injury but only with the assistance of electrical spinal cord stimulation.


Assuntos
Aprendizagem , Paraplegia/fisiopatologia , Estimulação da Medula Espinal/métodos , Medula Espinal/fisiopatologia , Animais , Axônios/fisiologia , Encéfalo/fisiopatologia , Potencial Evocado Motor , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Neurônios Motores/fisiologia , Movimento , Paraplegia/terapia , Ratos , Ratos Sprague-Dawley
12.
Exp Brain Res ; 239(8): 2345-2355, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34185100

RESUMO

The way the brain controls voluntary movements for normal and pathological subject remains puzzling. In this selective review, we provide unreported harmonies between the anterior midcingulate cortex (aMCC) activities and the ideomotor mechanism postulating that voluntary movements are controlled by the anticipation of the expected perceptual consequences of an action, critically involving bidirectional interplay of a given motor activity and corresponding sensory feedback. Among other evidence, we found that the required asymmetry in the bidirectional interplay between a given motor command and its expected sensory effect could rely on the specific activity of aMCC neurons when observing errors and successes. We confirm this hypothesis by presenting a pathological perspective, studying obsessive-compulsive and other related disorders in which hyperactivated and uniform aMCC activities should lead to a circular-reflex process that results in persistent ideas and repeated actions. By evaluating normal and pathological data, we propose considering the aMCC at a central position within the cerebral network involved in the ideomotor mechanism.


Assuntos
Mapeamento Encefálico , Giro do Cíngulo , Encéfalo , Cognição , Humanos , Neurônios
13.
Cereb Cortex ; 30(4): 2250-2266, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31828296

RESUMO

Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.


Assuntos
Mapeamento Encefálico/métodos , Lateralidade Funcional/fisiologia , Córtex Motor/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
14.
J Neurophysiol ; 124(2): 352-359, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579410

RESUMO

Beta-band oscillations are a dominant feature in the sensorimotor system, which includes movement-related beta desynchronization (MRBD) during the preparation and execution phases of movement and postmovement beta synchronization (PMBS) on movement cessation. Many studies have linked this rhythm to motor functions. However, its associations to the movement speed are still unclear. We make a hypothesis that PMBS will be modulated with increasing of movement speeds. We assessed the MRBD and PMBS during isotonic slower self-paced and ballistic movements with 15 healthy subjects. Furthermore, we conduct an additional control experiment with the isometric contraction with two levels of forces to match those in the isotonic slower self-paced and ballistic movements separately. We found that the amplitude of PMBS but not MRBD in motor cortex is modulated by the speed during voluntary movement. PMBS was positively correlated with movement speed and acceleration through the partial correlation analysis. However, there were no changes in the PMBS and MRBD during the isometric contraction with two levels of forces. These results demonstrate a different function of PMBS and MRBD to the movement speed during voluntary activity and suggest that the movement speed would affect the amplitude of PMBS.NEW & NOTEWORTHY Beta-band oscillations are a dominant feature in the sensorimotor system that associate to the motor function. We found that the movement-related postmovement beta synchronization (PMBS) over the contralateral sensorimotor cortex was positively correlated with the speed of a voluntary movement, but the movement-related beta desynchronization (MRBD) was not. Our results show a differential response of the PMBS and MRBD to the movement speed during voluntary movement.


Assuntos
Ritmo beta/fisiologia , Sincronização Cortical/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Adulto Jovem
15.
Cereb Cortex ; 29(12): 4982-5008, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30877802

RESUMO

We tested the hypothesis that the premotor cortex (PMC) in the cat contributes to the planning and execution of visually guided gait modifications. We analyzed single unit activity from 136 cells localized within layer V of cytoarchitectonic areas 6iffu and that part of 4δ within the ventral bank of the cruciate sulcus while cats walked on a treadmill and stepped over an obstacle that advanced toward them. We found a rich variety of discharge patterns, ranging from limb-independent cells that discharged several steps in front of the obstacle to step-related cells that discharged either during steps over the obstacle or in the steps leading up to that step. We propose that this population of task-related cells within this region of the PMC contributes to the temporal evolution of a planning process that transforms global information of the presence of an obstacle into the precise spatio-temporal limb adjustment required to negotiate that obstacle.


Assuntos
Marcha/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Animais , Mapeamento Encefálico/métodos , Gatos
16.
Conscious Cogn ; 77: 102836, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678778

RESUMO

In the "Libet experiment" the onset of movement-related brain activity preceded the reported time of the conscious intention to move, suggesting that conscious intention may not play a role in initiating voluntary movements (Libet, Gleason, Wright, & Pearl, 1983). Dominik et al. (2017) provided evidence that the intention reports employed in the Libet experiment, which Libet et al. (1983) found to precede movement reports, are invalid. In the study by Dominik et al., intention reports preceded movement reports only when participants had prior experience making movement reports. Individuals without such experience reported intention around the same time as movement. These findings suggest that Libet's intention reports do not reflect experiences of intention, but, rather, inferences based on prior experience with movement reports. Our study replicated the core findings of Dominik et al. We argue that Libet's intention reports are invalid and explore the phenomenology of intention in the Libet experiment.


Assuntos
Estado de Consciência/fisiologia , Variação Contingente Negativa/fisiologia , Intenção , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Volição/fisiologia , Adolescente , Adulto , Percepção Auditiva/fisiologia , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem
17.
J Neurosci ; 37(10): 2612-2626, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28159911

RESUMO

If not properly regulated, the large amount of reafferent sensory signals generated by our own movement could destabilize the CNS. We investigated how input from peripheral nerves to spinal cord is modulated during behavior. We chronically stimulated the deep radial nerve (DR; proprioceptive, wrist extensors), the median nerve (M; mixed, wrist flexors and palmar skin) and the superficial radial nerve (SR; cutaneous, hand dorsum) while four monkeys performed a delayed wrist flexion-extension task. Spinal neurons putatively receiving direct sensory input were defined based on their evoked response latency following nerve stimulation. We compared the influence of behavior on the evoked response (responsiveness to a specific peripheral input) and firing rate of 128 neuron-nerve pairs based on their source nerve. Firing rate increased during movement regardless of source nerve, whereas evoked response modulation was strikingly nerve-dependent. In SR (n = 47) and M (n = 27) neurons (cutaneous or mixed input), the evoked response was suppressed during wrist flexion and extension. In contrast, in DR neurons (n = 54, pure proprioceptive input), the evoked response was facilitated exclusively during movements corresponding to the contraction of DR spindle-bearing muscles (i.e., wrist extension). Furthermore, modulations of firing rate and evoked response were uncorrelated in SR and M neurons, whereas they tended to be positively comodulated in DR neurons. Our results suggest that proprioceptive and cutaneous inputs to the spinal cord are modulated differently during voluntary movements, suggesting a refined gating mechanism of sensory signals according to behavior.SIGNIFICANCE STATEMENT Voluntary movements produce copious sensory signals, which may overwhelm the CNS if not properly regulated. This regulation is called "gating" and occurs at several levels of the CNS. To evaluate the specificity of sensory gating, we investigated how different sources of somatosensory inputs to the spinal cord were modulated while monkeys performed wrist movements. We recorded activity from spinal neurons that putatively received direct connections from peripheral nerves while stimulating their source nerves, and measured the evoked responses. Whereas cutaneous inputs were suppressed regardless of the type of movement, muscular inputs were specifically facilitated during relevant movements. We conclude that, even at the spinal level, sensory gating is a refined and input-specific process.


Assuntos
Retroalimentação Sensorial/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Nervos Periféricos/fisiologia , Medula Espinal/fisiologia , Análise e Desempenho de Tarefas , Animais , Macaca , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Plasticidade Neuronal/fisiologia
18.
J Physiol ; 596(16): 3655-3673, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29726629

RESUMO

KEY POINTS: Salient and sudden sensory events generate a remarkably large response in the human brain, the vertex wave (VW). The VW is coupled with a modulation of a voluntarily-applied isometric force. In the present study, we tested whether the VW is also related to executing high-precision movements. The execution of a voluntary high-precision movement remains relatively independent of the brain activity reflected by the preceding VW. The apparent relationship between the positive VW and movement onset time is explained by goal-related but stimulus-independent neural activities. These results highlight the need to consider such goal-related but stimulus-independent neural activities when attempting to relate event-related potential amplitude with perceptual and behavioural performance. ABSTRACT: Salient and fast-rising sensory events generate a large biphasic vertex wave (VW) in the human electroencephalogram (EEG). We recently reported that the VW is coupled with a modulation of concomitantly-applied isometric force. In the present study, in five experiments, we tested whether the VW is also related to high-precision visuomotor control. We obtained three results. First, the saliency-induced increase in VW amplitude was paralleled by a modulation in two of the five extracted movement parameters: a reduction in the onset time of the voluntary movement (P < 0.005) and an increase in movement accuracy (P < 0.005). Second, spontaneous trial-by-trial variability in vertex wave amplitude, for a given level of stimulus saliency, was positively correlated with movement onset time (P < 0.001 in four out of five experiments). Third, this latter trial-by-trial correlation was explained by a widespread EEG negativity independent of the occurrence of the positive VW, although overlapping in time with it. These results indicate that (i) the execution of a voluntary high-precision movement remains relatively independent of the neural processing reflected by the preceding VW, with (ii) the exception of movement onset time, for which saliency-based contextual effects are dissociated from trial-by-trial effects. These results also indicate that (iii) attentional effects can produce spurious correlations between event-related potentials (ERPs) and behavioural measures. Although sudden salient stimuli trigger characteristic EEG responses coupled with distinct reactive components within an ongoing isometric task, the results of the present study indicate that the execution of a subsequent voluntary movement appears largely protected from such saliency-based modulation, with the exception of movement onset time.


Assuntos
Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Potenciais Somatossensoriais Evocados , Atividade Motora , Desempenho Psicomotor , Tempo de Reação , Estimulação Acústica , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
19.
Neuroimage ; 172: 654-662, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428581

RESUMO

Adaptively recalibrating motor-sensory asynchrony is critical for animals to perceive self-produced action consequences. It is controversial whether motor- or sensory-related neural circuits recalibrate this asynchrony. By combining magnetoencephalography (MEG) and functional MRI (fMRI), we investigate the temporal changes in brain activities caused by repeated exposure to a 150-ms delay inserted between a button-press action and a subsequent flash. We found that readiness potentials significantly shift later in the motor system, especially in parietal regions (average: 219.9 ms), while visually evoked potentials significantly shift earlier in occipital regions (average: 49.7 ms) in the delay condition compared to the no-delay condition. Moreover, the shift in readiness potentials, but not in visually evoked potentials, was significantly correlated with the psychophysical measure of motor-sensory adaptation. These results suggest that although both motor and sensory processes contribute to the recalibration, the motor process plays the major role, given the magnitudes of shift and the correlation with the psychophysical measure.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Potencial Evocado Motor/fisiologia , Potenciais Evocados Visuais/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Adulto Jovem
20.
Brain Topogr ; 31(5): 795-810, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29460169

RESUMO

The capacity to produce movements only at appropriate times is fundamental in successful behavior and requires a fine interplay between motor inhibition and facilitation. Evidence in humans indicates that the dorsal premotor cortex (PMCd) is involved in such preparatory and inhibitory processes, but how PMCd modulates motor output in humans is still unclear. We investigated this issue in healthy human volunteers, using a variant of the dual-coil transcranial magnetic stimulation (TMS) technique that allows testing the short-latency effects of conditioning TMS to the left PMCd on test TMS applied to the ipsilateral orofacial primary motor cortex (M1). Participants performed a delayed cued simple reaction time task. They were asked to produce a lip movement cued by an imperative GO-signal presented after a predictable SET-period, during which TMS was applied at different intervals. Results showed that the area of motor evoked potentials (MEPs) to test TMS was modulated by conditioning TMS. A transient inhibition cortico-bulbar excitability by PMCd stimulation was observed around the middle of the SET-period. Conversely, a ramping excitatory effect of PMCd stimulation appeared towards the end of the SET-period, as the time of the predicted GO-signal approached. The time-course of PMCd-M1 activity scaled to the varying SET-period duration. Our data indicate that inhibition and excitation of motor output during a delayed reaction time task are two distinct neural phenomena. They both originate in PMCd and are conveyed via cortico-cortical connections to the ipsilateral M1, where they are integrated to produce harmonic fluctuations of motor output.


Assuntos
Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Sinais (Psicologia) , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Voluntários Saudáveis , Humanos , Lábio/fisiologia , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Vias Neurais/fisiologia , Neuronavegação , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa