Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2221499120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155872

RESUMO

In mammals, male and female gonads initially develop from bipotential progenitor cells, which can differentiate into either testicular or ovarian cells. The decision to adopt a testicular or ovarian fate relies on robust genetic forces, i.e., activation of the testis-determining gene Sry, as well as a delicate balance of expression levels for pro-testis and pro-ovary factors. Recently, epigenetic regulation has been found to be a key element in activation of Sry. Nevertheless, the mechanism by which epigenetic regulation controls the expression balance of pro-testis and pro-ovary factors remains unclear. Chromodomain Y-like protein (CDYL) is a reader protein for repressive histone H3 methylation marks. We found that a subpopulation of Cdyl-deficient mice exhibited XY sex reversal. Gene expression analysis revealed that the testis-promoting gene Sox9 was downregulated in XY Cdyl-deficient gonads during the sex determination period without affecting Sry expression. Instead, we found that the ovary-promoting gene Wnt4 was derepressed in XY Cdyl-deficient gonads prior to and during the sex-determination period. Wnt4 heterozygous deficiency restored SOX9 expression in Cdyl-deficient XY gonads, indicating that derepressed Wnt4 is a cause of the repression of Sox9. We found that CDYL directly bound to the Wnt4 promoter and maintained its H3K27me3 levels during the sex-determination period. These findings indicate that CDYL reinforces male gonadal sex determination by repressing the ovary-promoting pathway in mice.


Assuntos
Epigênese Genética , Processos de Determinação Sexual , Animais , Feminino , Masculino , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Mamíferos/genética , Ovário/metabolismo , Processos de Determinação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Testículo/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
2.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37505110

RESUMO

Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.


Assuntos
Células Epiteliais , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Camundongos Knockout , Proteína Wnt4/metabolismo
3.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448532

RESUMO

Undescended testis (UDT) affects 6% of male births. Despite surgical correction, some men with unilateral UDT may experience infertility with the contralateral descended testis (CDT) showing no A-dark spermatogonia. To improve our understanding of the etiology of infertility in UDT, we generated a novel murine model of left unilateral UDT. Gubernaculum-specific Wnt4 knockout (KO) mice (Wnt4-cKO) were generated using retinoic acid receptor ß2-cre mice and were found to have a smaller left-unilateral UDT. Wnt4-cKO mice with abdominal UDT had an increase in serum follicle-stimulating hormone and luteinizing hormone and an absence of germ cells in the undescended testicle. Wnt4-cKO mice with inguinal UDT had normal hormonal profiles, and 50% of these mice had no sperm in the left epididymis. Wnt4-cKO mice had fertility defects and produced 52% fewer litters and 78% fewer pups than control mice. Wnt4-cKO testes demonstrated increased expression of estrogen receptor α and SOX9, upregulation of female gonadal genes, and a decrease in male gonadal genes in both CDT and UDT. Several WNT4 variants were identified in boys with UDT. The presence of UDT and fertility defects in Wnt4-cKO mice highlights the crucial role of WNT4 in testicular development.


Assuntos
Criptorquidismo , Infertilidade , Feminino , Masculino , Humanos , Camundongos , Animais , Gubernáculo , Criptorquidismo/genética , Fertilidade/genética , Espermatogônias , Camundongos Knockout , Proteína Wnt4/genética
4.
J Mammary Gland Biol Neoplasia ; 29(1): 13, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916673

RESUMO

Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.


Assuntos
Células Epiteliais , Perfilação da Expressão Gênica , Glândulas Mamárias Animais , Maturidade Sexual , Células Estromais , Transcriptoma , Animais , Feminino , Camundongos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Células Estromais/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Maturidade Sexual/fisiologia , Proliferação de Células , Ciclo Estral/genética
5.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154558

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Assuntos
Estruturas Embrionárias , Fatores de Transcrição Forkhead , Nefropatias , Rim , Néfrons , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Adulto , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla , Rim/anormalidades , Rim/embriologia , Nefropatias/genética , Camundongos Knockout , Néfrons/embriologia , Fatores de Transcrição/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo
6.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128985

RESUMO

Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin α5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation.


Assuntos
Diferenciação Celular/genética , Epitélio/metabolismo , Laminina/genética , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Proteína Wnt4/genética , Animais , Biomarcadores , Células Epiteliais , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Laminina/metabolismo , Glândulas Mamárias Animais/embriologia , Camundongos , Modelos Biológicos , Morfogênese/genética , Organogênese/genética , Proteína Wnt4/metabolismo
7.
Development ; 148(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441379

RESUMO

Cryptorchidism is the most common urologic birth defect in men and is a predisposing factor of male infertility and testicular cancer, yet the etiology remains largely unknown. E2F1 microdeletions and microduplications contribute to cryptorchidism, infertility and testicular tumors. Although E2f1 deletion or overexpression in mice causes spermatogenic failure, the mechanism by which E2f1 influences testicular function is unknown. This investigation revealed that E2f1-null mice develop cryptorchidism with severe gubernacular defects and progressive loss of germ cells resulting in infertility and, in rare cases, testicular tumors. It was hypothesized that germ cell depletion resulted from an increase in WNT4 levels. To test this hypothesis, the phenotype of a double-null mouse model lacking both Wnt4 and E2f1 in germ cells was analyzed. Double-null mice are fertile. This finding indicates that germ cell maintenance is dependent on E2f1 repression of Wnt4, supporting a role for Wnt4 in germ cell survival. In the future, modulation of WNT4 expression in men with cryptorchidism and spermatogenic failure due to E2F1 copy number variations may provide a novel approach to improve their spermatogenesis and perhaps their fertility potential after orchidopexy.


Assuntos
Fator de Transcrição E2F1/metabolismo , Espermatogênese , Testículo/metabolismo , Proteína Wnt4/metabolismo , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Barreira Hematotesticular/patologia , Ciclo Celular/genética , Criptorquidismo/genética , Criptorquidismo/patologia , Fator de Transcrição E2F1/deficiência , Fertilidade , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais , Espermatozoides/metabolismo , Testículo/patologia
8.
Biol Reprod ; 110(5): 985-999, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38376238

RESUMO

Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.


Assuntos
Fatores de Transcrição SOX9 , Processos de Determinação Sexual , Testículo , Trombospondinas , Regulação para Cima , Animais , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Masculino , Feminino , Camundongos , Trombospondinas/genética , Trombospondinas/metabolismo , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Testículo/metabolismo , Gônadas/metabolismo , Ovário/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Sexual/genética , Camundongos Endogâmicos C57BL
9.
J Mammary Gland Biol Neoplasia ; 28(1): 24, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019315

RESUMO

Progesterone receptor (PR) signaling is required for mammary gland development and homeostasis. A major bottleneck in studying PR signaling is the lack of sensitive assays to measure and visualize PR pathway activity both quantitatively and spatially. Here, we develop new tools to study PR signaling in human breast epithelial cells. First, we generate optimized Progesterone Responsive Element (PRE)-luciferase constructs and demonstrate that these new reporters are a powerful tool to quantify PR signaling activity across a wide range of progesterone concentrations in two luminal breast cancer cell lines, MCF7 and T47D. We also describe a fluorescent lentiviral PRE-GFP reporter as a novel tool to visualize PR signaling at the single-cell level. Our reporter constructs are sensitive to physiological levels of progesterone. Second, we show that low background signaling, and high levels of PR expression are a prerequisite for robustly measuring PR signaling. Increasing PR expression by transient transfection, stable overexpression in MCF7 or clonal selection in T47D, drastically improves both the dynamic range of luciferase reporter assays, and the induction of endogenous PR target genes as measured by qRT-PCR. We find that the PR signaling response differs per cell line, target gene and hormone concentration used. Taken together, our tools allow a more rationally designed approach for measuring PR signaling in breast epithelial cells.


Assuntos
Progesterona , Receptores de Progesterona , Humanos , Transdução de Sinais , Células MCF-7 , Luciferases
10.
J Biol Chem ; 298(8): 102193, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764169

RESUMO

Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow-derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C-mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow-derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.


Assuntos
Aterosclerose , Fosforilação Oxidativa , Aterosclerose/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ligantes , Lipídeos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Proteína Wnt4/metabolismo
11.
Breast Cancer Res ; 25(1): 60, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254150

RESUMO

Many factors, including reproductive hormones, have been linked to a woman's risk of developing breast cancer (BC). We reviewed the literature regarding the relationship between ovulatory menstrual cycles (MCs) and BC risk. Physiological variations in the frequency of MCs and interference with MCs through genetic variations, pathological conditions and or pharmaceutical interventions revealed a strong link between BC risk and the lifetime number of MCs. A substantial reduction in BC risk is observed in situations without MCs. In genetic or transgender situations with normal female breasts and estrogens, but no progesterone (P4), the incidence of BC is very low, suggesting an essential role of P4. During the MC, P4 has a strong proliferative effect on normal breast epithelium, whereas estradiol (E2) has only a minimal effect. The origin of BC has been strongly linked to proliferation associated DNA replication errors, and the repeated stimulation of the breast epithelium by P4 with each MC is likely to impact the epithelial mutational burden. Long-lived cells, such as stem cells, present in the breast epithelium, can carry mutations forward for an extended period of time, and studies show that breast tumors tend to take decades to develop before detection. We therefore postulate that P4 is an important factor in a woman's lifetime risk of developing BC, and that breast tumors arising during hormonal contraception or after menopause, with or without menopausal hormone therapy, are the consequence of the outgrowth of pre-existing neoplastic lesions, eventually stimulated by estrogens and some progestins.


Assuntos
Neoplasias da Mama , Progesterona , Feminino , Humanos , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Ciclo Menstrual/fisiologia , Estrogênios , Estradiol , Preparações Farmacêuticas
12.
Cytokine ; 172: 156400, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839333

RESUMO

BACKGROUND: WNT4 gene polymorphism are common in endometriosis and may functionally link estrogen and estrogen receptor signaling. Previous study confirmed estrogen and estrogen receptor signaling recruit macrophage to promote the pathogenesis of endometriosis. To investigate the effect of WNT4 in endometriosis involved in macrophage polarization and whether WNT4 could reduce the apoptosis of granulosa cells. METHODS: An observational study consisting of 8 cases of women with endometriosis (diagnosed by surgery and histology) and 22 mice of endometriosis animal model was conducted. Granulosa cells were isolated from 16 patients with endometriosis and co-cultured with macrophage under WNT4 treatment using TUNEL assay, quantitative reverse transcription PCR, flow cytometry and ELISA analysis. 22 mice of endometriosis animal model confirmed the WNT4 treatment effects using histology and immunohistochemistry, Western blot and flow cytometry. RESULTS: We observed that the apoptotic proportion of granulosa cells was significantly decreased and M2 macrophage was significantly increased after WNT4 treatment during the granulosa cell and macrophage co-culture system. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of granulosa cell M-CSF led to the M2 polarization of macrophages. The animal model also suggested that the anti-apoptotic effect of WNT4 on granulosa cells were conducted by the M2 polarized macrophage. CONCLUSIONS: WNT4 could reduce granulosa cell apoptosis and improve ovarian reserve by promoting macrophage polarization in endometriosis. M-CSF secreted by granulosa cell after WNT4 treatment was the main mediator of macrophage polarization.


Assuntos
Endometriose , Fator Estimulador de Colônias de Macrófagos , Humanos , Feminino , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Endometriose/metabolismo , Receptores de Estrogênio/metabolismo , Macrófagos/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Apoptose , Estrogênios/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
13.
Clin Oral Investig ; 28(1): 64, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38158464

RESUMO

OBJECTIVES: This study aimed to investigate the functions of 19 types of Wnt ligands during the process of osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs), with particular attention to WNT3A and WNT4. MATERIALS AND METHODS: The expression levels of 19 types of Wnt ligands were examined using real-time quantitative polymerase chain reaction (real-time qPCR) during hPDLSCs osteogenic differentiation at 7, 10, and 14 days. Knockdown of WNT3A and WNT4 expression was achieved using adenovirus vectors, and conditioned medium derived from WNT3A and WNT4 overexpression plasmids was employed to investigate their roles in hPDLSCs osteogenesis. Osteogenic-specific genes were analyzed using real-time qPCR. Alkaline phosphatase (ALP) and alizarin red S activities and staining were employed to assess hPDLSCs' osteogenic differentiation ability. RESULTS: During hPDLSCs osteogenic differentiation, the expression of 19 types of Wnt ligands varied, with WNT3A and WNT4 showing significant upregulation. Inhibiting WNT3A and WNT4 expression hindered hPDLSCs' osteogenic capacity. Conditioned medium of WNT3A promoted early osteogenic differentiation, while WNT4 facilitated late osteogenesis slightly. CONCLUSION: Wnt ligands, particularly WNT3A and WNT4, play an important role in hPDLSCs' osteogenic differentiation, highlighting their potential as promoters of osteogenesis. CLINICAL RELEVANCE: Given the challenging nature of alveolar bone regeneration, therapeutic strategies that target WNT3A and WNT4 signaling pathways offer promising opportunities. Additionally, innovative gene therapy approaches aimed at regulating of WNT3A and WNT4 expression hold potential for improving alveolar bone regeneration outcomes.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Osteogênese/genética , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco , Diferenciação Celular/genética , Células Cultivadas
14.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139440

RESUMO

MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development. OBJECTIVE: To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA). METHOD: The cross-sectional observational study comprised 94 subjects. The expression of miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6, and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25% men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers without risk factors for cardiovascular diseases (CVD). RESULTS: Higher levels of WNT1 (0.189 [0.184; 0.193] ng/mL vs. 0.15 [0.15-0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07; 0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112; 0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001). MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001), whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012) and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with WNT1 (r = -0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive correlation between miR-145 expression and the WNT4 protein level was observed in patients with obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent predictors of INOCA (p < 0.001 and p = 0.002, respectively). CONCLUSIONS: Activation of the canonical cascade of WNT-ß-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved in the development of coronary artery obstruction, presumably through the regulation of the WNT4 protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the type of coronary artery lesion.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , MicroRNAs , Via de Sinalização Wnt , Feminino , Humanos , Masculino , Doença da Artéria Coronariana/metabolismo , Estudos Transversais , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Proteína Wnt4/genética
15.
J Periodontal Res ; 57(3): 461-469, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35137408

RESUMO

BACKGROUND AND OBJECTIVE: Occlusal trauma is one of the most important local contributing factors of periodontitis. It has been reported that Wnt4, a noncanonical Wnt ligand, can inhibit osteoclast formation and inflammation and promote bone formation in vivo. However, the prospects of Wnt4 application in occlusal trauma and periodontitis have not yet been described. This study aimed to investigate the function and the corresponding mechanism of Wnt4 to regulate bone metabolism in occlusal trauma and periodontitis. MATERIAL AND METHODS: Osteogenic-induced MC3T3-E1 cells were treated with or without Porphyromonas gingivalis lipopolysaccharide (Pg. LPS) under cyclic uniaxial compressive stress. After treatment with mouse recombinant protein Wnt4 (rWnt4), the expression of osteogenic markers and activation of the IKK-NF-κB signaling pathway were evaluated in vitro. To investigate whether Wnt4 can promote osteogenesis via the ROCK signaling pathway, the expression of RhoA was evaluated in vitro. Finally, we evaluated the change in bone quantity and the activation of the IKK-NF-κB and ROCK signaling in mice with occlusal trauma and periodontitis to demonstrate the therapeutic efficacy of rWnt4 injection. RESULTS: Stimulation of traumatic force and Pg. LPS stimulation suppressed the expression of osteoblast markers, but their expression was rescued after rWnt4 treatment in vitro. In addition, the inhibition of the ROCK signaling pathway induced by force loading was reversed when rWnt4 was applied in vitro. Micro-CT, H&E, and TRAP staining of the mandibles showed increased bone loss in the occlusal trauma-aggravated periodontitis group, whereas it was rescued after rWnt4 injection. The expression levels of IκBα and p65 were upregulated in occlusal trauma and periodontitis-bearing mice, whereas the expression levels of Runx2 and RhoA were downregulated. After rWnt4 injection, remarkably upregulation of Runx2 and RhoA expression was observed in occlusal trauma and periodontitis- bearing mice. CONCLUSION: Wnt4 not only inhibits IKK-NF-κB signaling but also activates ROCK signaling to inhibit osteoclast formation and promote bone regeneration in occlusal trauma and periodontitis-bearing mice.


Assuntos
Oclusão Dentária Traumática , Periodontite , Animais , Subunidade alfa 1 de Fator de Ligação ao Core , Quinase I-kappa B/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Periodontite/tratamento farmacológico , Transdução de Sinais , Proteína Wnt4 , Quinases Associadas a rho/metabolismo
16.
Genes Dev ; 28(20): 2205-18, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25260709

RESUMO

Signals from the niche play pivotal roles in regulating adult stem cell self-renewal. Previous studies indicated that the steroid hormones can expand mammary stem cells (MaSCs) in vivo. However, the facilitating local niche factors that directly contribute to the MaSC expansion remain unclear. Here we identify R-spondin1 (Rspo1) as a novel hormonal mediator in the mammary gland. Pregnancy and hormonal treatment up-regulate Rspo1 expression. Rspo1 cooperates with another hormonal mediator, Wnt4, to promote MaSC self-renewal through Wnt/ß-catenin signaling. Knockdown of Rspo1 and Wnt4 simultaneously abolishes the stem cell reconstitution ability. In culture, hormonal treatment that stimulates the expression of both Rspo1 and Wnt4 can completely substitute for exogenous Wnt proteins, potently expand MaSCs, and maintain their full development potential in transplantation. Our data unveil the intriguing concept that hormones induce a collaborative local niche environment for stem cells.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Trombospondinas/metabolismo , Animais , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos BALB C , Transdução de Sinais , Trombospondinas/genética , Regulação para Cima , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
17.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886848

RESUMO

During human kidney development, cells of the proximal nephron gradually differentiate into podocytes and parietal epithelial cells (PECs). Podocytes are terminally differentiated cells that play a key role in both normal and pathological kidney function. Therefore, the potential of podocytes to regenerate or be replaced by other cell populations (PECs) is of great interest for the possible treatment of kidney diseases. In the present study, we analyzed the proliferation and differentiation capabilities of podocytes and PECs, changes in the expression pattern of nestin, and several early proteins including WNT4, Notch2, and Snail, as well as Ki-67, in tissues of developing, postnatal, and pathologically changed human kidneys by using immunohistochemistry and electron microscopy. Developing PECs showed a higher proliferation rate than podocytes, whereas nestin expression characterized only podocytes and pathologically changed kidneys. In the developing kidneys, WNT4 and Notch2 expression increased moderately in podocytes and strongly in PECs, whereas Snail increased only in PECs in the later fetal period. During human kidney development, WNT4, Notch2, and Snail are involved in early nephrogenesis control. In kidneys affected by congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS), WNT4 decreased in both cell populations, whereas Notch2 decreased in FSGS. In contrast, Snail increased both in CNF and FSGS, whereas Notch2 increased only in CNF. Electron microscopy revealed cytoplasmic processes spanning the urinary space between the podocytes and PECs in developing and healthy postnatal kidneys, whereas the CNF and FSGS kidneys were characterized by numerous cellular bridges containing cells with strong expression of nestin and all analyzed proteins. Our results indicate that the mechanisms of gene control in nephrogenesis are reactivated under pathological conditions. These mechanisms could have a role in restoring glomerular integrity by potentially inducing the regeneration of podocytes from PECs.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Células Epiteliais/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Rim/metabolismo , Nefropatias/metabolismo , Nestina/genética , Nestina/metabolismo , Podócitos/metabolismo
18.
J Cell Mol Med ; 24(12): 7023-7033, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32391984

RESUMO

Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8-Br-cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock-down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up-regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Decídua/metabolismo , Serpinas/metabolismo , Transdução de Sinais , Proteína Wnt4/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Metaloproteinases da Matriz/metabolismo , Camundongos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serpinas/genética , Células Estromais/citologia , Células Estromais/metabolismo
19.
J Biol Chem ; 294(52): 19950-19966, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31740580

RESUMO

Porcupine O-acyltransferase (PORCN) is considered essential for Wnt secretion and signaling. However, we observed that PORCN inhibition does not phenocopy the effects of WNT4 knockdown in WNT4-dependent breast cancer cells. This suggests a unique relationship between PORCN and WNT4 signaling. To examine the role of PORCN in WNT4 signaling, here we overexpressed WNT4 or WNT3A in breast cancer, ovarian cancer, and fibrosarcoma cell lines. Conditioned media from these lines and co-culture systems were used to assess the dependence of Wnt secretion and activity on the critical Wnt secretion proteins PORCN and Wnt ligand secretion (WLS) mediator. We observed that WLS is universally required for Wnt secretion and paracrine signaling. In contrast, the dependence of WNT3A secretion and activity on PORCN varied across the cell lines, and WNT4 secretion was PORCN-independent in all models. Surprisingly, WNT4 did not exhibit paracrine activity in any tested context. Absent the expected paracrine activity of secreted WNT4, we identified cell-autonomous Wnt signaling activation by WNT4 and WNT3A, independent of PORCN or Wnt secretion. The PORCN-independent, cell-autonomous Wnt signaling demonstrated here may be critical in WNT4-driven cellular contexts or in those that are considered to have dysfunctional Wnt signaling.


Assuntos
Aciltransferases/metabolismo , Proteínas de Membrana/metabolismo , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Proteína Wnt4/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados/química , Fulvestranto/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Comunicação Parácrina , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/antagonistas & inibidores , Proteína Wnt3A/genética , Proteína Wnt4/antagonistas & inibidores , Proteína Wnt4/genética
20.
Development ; 144(24): 4530-4539, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113990

RESUMO

Notch signaling plays important roles during mammalian nephrogenesis. To investigate whether Notch regulates nephron segmentation, we performed Notch loss-of-function and gain-of-function studies in developing nephrons in mice. Contrary to the previous notion that Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules in the mammalian nephron, we show that inhibition of Notch blocks the formation of all nephron segments and that constitutive activation of Notch in developing nephrons does not promote or repress the formation of a specific segment. Cells lacking Notch fail to form the S-shaped body and show reduced expression of Lhx1 and Hnf1b Consistent with this, we find that constitutive activation of Notch in mesenchymal nephron progenitors causes ectopic expression of Lhx1 and Hnf1b and that these cells eventually form a heterogeneous population that includes proximal tubules and other types of cells. Our data suggest that Notch signaling is required for the formation of all nephron segments and that it primes nephron progenitors for differentiation rather than directing their cell fates into a specific nephron segment.


Assuntos
Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Túbulos Renais Proximais/embriologia , Organogênese/fisiologia , Receptores Notch/metabolismo , Animais , Diferenciação Celular , Ativação Enzimática/genética , Fator 1-beta Nuclear de Hepatócito/biossíntese , Proteínas com Homeodomínio LIM/biossíntese , Camundongos , Camundongos Transgênicos , Receptores Notch/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Proteína Wnt4/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa