RESUMO
Lignocellulosic sugars are the major renewable building blocks for green fuels and chemicals production. However, the implication of an effective pretreatment process is an inevitable process to access the biomass sugars. Alkaline pretreatment is a viable pretreatment process, causing a selective removal of lignin, with a minimum degradation of carbohydrates, increasing porosity and surface area, eventually enhancing enzymatic hydrolysis. Here, we have assessed commercial cloth washing detergents as catalytic agents, for the lignin removal from sugarcane bagasse. Three different detergents (Brilhiante® (B), Omo® (O), Sabonito Flash® (F)) were tested using three different concentrations (5, 10 and 15%) with and without pH adjustment. Pretreatment with O5pH (5% Omo®, pH 12) showed the maximum lignin removal (81.14%) and retainment of cellulose (44.15%), and hemicellulose (29.71%) in the pretreated bagasse. The maximum sugars (26.62 g/L) were released from the O10pH-pretreated sugarcane bagasse. This study shows the potential of washing detergents as the new potential catalytic agents for the pretreatment of biomass for efficient sugars recovery and retaining maximum lignin in the pretreated substrate.
RESUMO
Without the addition of silicon and aluminum sources, a pure-phase KNaLSX zeolite was successfully synthesized from the residue (lithium slag), which was produced from spodumene in the production process of lithium carbonate. The KNaLSX samples were characterized by an X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), X-ray Fluorescence Spectrometer (XRF), Thermogravimetric Differential Thermal Analysis (TG-DTA), Fourier Transform Infrared Spectrometer (FT-IR), and N2 adsorption measurement. The ion exchange capacity and the ion exchange rate of calcium and magnesium ions were measured as used for a detergent builder, and the results were compared with the standard zeolites (KNaLSX and 4A). The experimental results show that the pure-phase KNaLSX synthSynthesis and characterization of co-crystalline zeolite composite of LSX/esized from lithium slag has a SiO2/Al2O3 ratio of 2.01 with a grain size of 3~4 µm, which is close to the commercial KNaLSX sample of a SiO2/Al2O3 ratio of 2.0. The BET-specific surface area of KNaLSX is 715 m2/g, which is larger than the low-silicon X-type zeolite (LSX) synthesized from waste residue reported in the literature. The ion exchange rate constant of calcium and magnesium ions in KNaLSX is 5 times and 3 times that of 4A zeolite, respectively. KNaLSX also has a high ion exchange capacity for magnesium ion of 191 mgMgCO3/g, which is 2 times than that of 4A zeolite, and a high ion exchange capacity for calcium ion of 302 mgCaCO3/g, which meets the first-grade standard of zeolite for detergent builders in China. The work provides the basis for high-value resource utilization of lithium slag and the development of a detergent builder for rapid washing.
RESUMO
BACKGROUND: The presence of pesticide residues in food has caused much concern. The low health risks and environmental impacts of limonene make it a very interesting solvent for use in green chemistry. Washing effects of limonene on pesticide residues of methyl chlorpyrifos, chlorothalonil, chlorpyrifos, fenpropathrin and deltamethrin were investigated in green pepper. RESULTS: Results showed that washing with a low concentration of limonene for 5 min (where LOQ is limit of quantitation) caused 53.67%, Assuntos
Capsicum/química
, Cicloexenos/química
, Detergentes/química
, Contaminação de Alimentos/prevenção & controle
, Manipulação de Alimentos
, Frutas/química
, Resíduos de Praguicidas/análise
, Terpenos/química
, China
, Clorpirifos/análogos & derivados
, Clorpirifos/análise
, Cromatografia Gasosa
, Emulsões
, Fungicidas Industriais/análise
, Inseticidas/análise
, Limite de Detecção
, Limoneno
, Nitrilas/análise
, Concentração Osmolar
, Resíduos de Praguicidas/química
, Piretrinas/análise
, Solventes/química
, Fatores de Tempo