Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2308969120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695918

RESUMO

Water scarcity is a pressing global issue, requiring innovative solutions such as atmospheric water harvesting (AWH), which captures moisture from the air to provide potable water to many water-stressed areas. Thermoresponsive hydrogels, a class of temperature-sensitive polymers, demonstrate potential for AWH as matrices for hygroscopic components like salts predominantly due to their relatively energy-efficient desorption properties compared to other sorbents. However, challenges such as limited swelling capacity due to the salting-out effect and difficulty in more complete water release hinder the effectiveness of conventional hydrogel sorbents. To overcome these limitations, we introduce molecularly confined hydration in thermoresponsive hydrogels by employing a bifunctional polymeric network composed of hygroscopic zwitterionic moieties and thermoresponsive moieties. Here, we show that this approach ensures stable water uptake, enables water release at relatively low temperatures, and exhibits rapid sorption-desorption kinetics. Furthermore, by incorporating photothermal absorbers, the sorbent can achieve solar-driven AWH with comparable water release performance. This work advances the design of AWH sorbents by introducing molecularly confined hydration in thermoresponsive hydrogels, leading to a more efficient and sustainable approach to water harvesting. Our findings offer a potential solution for advanced sorbent design with comprehensive performance to mitigate the freshwater crisis.

2.
Proc Natl Acad Sci U S A ; 119(36): e2209662119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037348

RESUMO

Water harvesting from air is desired for decentralized water supply wherever water is needed. When water vapor is condensed as droplets on a surface the unremoved droplets act as thermal barriers. A surface that can provide continual droplet-free areas for nucleation is favorable for condensation water harvesting. Here, we report a flow-separation condensation mode on a hydrophilic reentrant slippery liquid-infused porous surface (SLIPS) that rapidly removes droplets with diameters above 50 µm. The slippery reentrant channels lock the liquid columns inside and transport them to the end of each channel. We demonstrate that the liquid columns can harvest the droplets on top of the hydrophilic reentrant SLIPS at a high droplet removal frequency of 130 Hz/mm2. The sustainable flow separation without flooding increases the water harvesting rate by 110% compared to the state-of-the-art hydrophilic flat SLIPS. Such a flow-separation condensation approach paves a way for water harvesting.


Assuntos
Propriedades de Superfície , Recursos Hídricos , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Movimentos da Água
3.
Small ; 20(13): e2307561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967348

RESUMO

Multifunction superhydrophobic coatings that facilitate water harvesting are attractive for addressing the daunting water crisis, yet, they are caught in a double bind when their durability is considered, as durable coatings will require both tough micro-textures to survive concentrated stress and high-surface-energy chemistry to form chemical bonds within the matrix. To date, a universal bulk-phase coating that combines multifunctionality, ultra-durability, and fabrication feasibility remains challenging. Here, a binary cooperative cell design is reported that can solve the contradiction between the multifunctionality and durability requirements of superhydrophobic coatings. In this strategy, mechanochemically tailored cells with releasable nanoseeds are infused in the common matrix, which serves both as a versatile chemical bridge to achieve strong bonds within the coating building blocks, and as an instantaneous self-repairing generator to improve durability. Such a strategy significantly boosted the wear resistance and outdoor stability of the coatings by over 30-100 and 18 folds, respectively, compared with conventional coatings. The coating is applied to the sustainable application, i.e., enhancing the water collection efficiency by at least 1000% even after harsh abrasion. The strategy will broaden the vision in handling the dilemma properties among functional coatings and promote the application of superhydrophobic coatings in extreme environments.

4.
Small ; 20(12): e2307416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939312

RESUMO

The shortage of freshwater is a global problem, however, the gel that can be used for atmospheric water harvesting (AWH) in recent years studying, suffer from salt leakage, agglomeration, and slow water evaporation efficiency. Herein, a solar-driven atmospheric water harvesting (SAWH) aerogel is prepared by UV polymerization and freeze-drying technique, using poly(N-isopropylacrylamide) (PNIPAm), hydroxypropyl cellulose (HPC), ethanolamine-decorate LiCl (E-LiCl) and polyaniline (PANI) as raw materials. The PNIPAm and HPC formed aerogel networks makes the E-LiCl stably and efficiently loaded, improving the water adsorption-desorption kinetics, and PANI achieves rapid water vapor evaporation. The aerogel has low density ≈0.12-0.15 g cm-3, but can sustain a weight of 1000 times of its own weight. The synergist of elements and structure gives the aerogel has 0.46-2.95 g g-1 water uptake capability at 30-90% relative humidity, and evaporation rate reaches 1.98 kg m-2 h-1 under 1 sun illumination. In outdoor experiments, 88% of the water is harvesting under natural light irradiation, and an average water harvesting rate of 0.80 gwater gsorbent -1 day-1. Therefore, the aerogel can be used in arid and semi-arid areas to collect water for plants and animals.

5.
Small ; : e2406803, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375961

RESUMO

The poor ability of covalent organic frameworks (COFs) based adsorbents at low relative humidity (RH) conditions limits their applications for air-water harvesting in arid environments. In the present work, the sulfonated COFs (DAAQ-TFP-SO3H@LiCl) composites are prepared through the functionalization of sulfonic acid and LiCl composite to improve its hydrophilicity. TheDAAQ-TFP-SO3H@LiCl composites exhibit a good adsorption performance, outperforming many other COF adsorbents developed so far. It can absorb 0.22 ± 0.005 g g-1 and 1.01 ± 0.027 g g-1 of water at room temperature under 20% RH and 90% RH, respectively while demonstrating good cyclic stability. Compared with the isotherm of the DAAQ-TFP, the introduction of the sulfonic acid group shifts the inflection point of the water isotherm toward low humidity, indicating that the sulfonic acid group effectively expends the working humidity range of the adsorbent and enables the effective water adsorption in an arid environment. Furthermore, the DAAQ-TFP-SO3H@LiCl composites display rapid kinetics during both the adsorption and desorption processes, reaching saturation within 60 min in the equilibrium adsorption test and completing desorption within 12 min at 50 °C. This innovative approach provides a new method for designing adsorbent materials with low energy input requirements and high daily water consumption capabilities.

6.
Small ; 20(37): e2400420, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38751057

RESUMO

Global water scarcity is leading to increasingly tense competition across populations. In order to complement the largely fast-depleting fresh water sources and mitigate the challenges generated by brine discharge from desalination, atmospheric water harvesting (AWH) has emerged to support long-term water supply. This work presents a novel alginate-based hybrid material comprised of porous silico-aluminophosphate-34 (SAPO-34) as fast-transport channel medium as well as hydrophilicity and stability enhancer, and graphene-based sheets as light absorber for solar-enabled evaporation, both optimally incorporated in an alginate matrix, resulting in a composite sorbent capable of harvesting water from the atmosphere with a record intake of up to 6.85 gw gs -1. Natural sunlight is solely used to enable desorption achieving increase of the temperature of the developed network up to 60 °C and resulting in release of the sorbed water, with impurities content well below the World Health Organization (WHO) upper limits. After 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This work provides an impactful perspective toward sustainable generation of water from humidity without external energy consumption supporting the emergence of alternative water production solutions.

7.
Small ; 20(20): e2306521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366268

RESUMO

Metal-organic frameworks (MOFs) are high-performance adsorbents for atmospheric water harvesting but have poor water-desorption ability, requiring excess energy input to release the trapped water. Addressing this issue, a Janus-structured adsorbent with functional asymmetry is presented. The material exhibits contrasting functionalities on either face - a hygroscopic face interfaced with a photothermal face. Hygroscopic aluminum fumarate MOF and photothermal CuxS layers are in-situ grown on opposite sides of a Cu/Al bimetallic substrate, resulting in a CuxS-Cu/Al-MOF Janus hygro-photothermal hybrid. The two faces serve as independent "factories" for photothermal conversion and water adsorption-desorption respectively, while the interfacing bimetallic layer serves as a "heat conveyor belt" between them. Due to the high porosity and hydrophilicity of the MOF, the hybrid exhibits a water-adsorption capacity of 0.161 g g-1 and a fast adsorption rate (saturation within 52 min) at 30% relative humidity. Thanks to the photothermal CuxS, the hybrid can reach 71.5 °C under 1 Sun in 20 min and desorb 97% adsorbed water in 40 min, exhibiting a high photothermal conversion efficiency of over 90%. CuxS-Cu/Al-MOF exhibits minimal fluctuations after 200 cycles, and its water-generation capacity is 3.21 times that of powdery MOF in 3 h in a self-designed prototype in one cycle.

8.
Chemistry ; 30(6): e202303474, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078517

RESUMO

The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.

9.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675671

RESUMO

Atmospheric water harvesting (AWH) is considered a promising strategy for sustainable freshwater production in landlocked and arid regions. Hygroscopic salt-based composite sorbents have attracted widespread attention for their water harvesting performance, but suffer from aggregation and leakage issues due to the salting-out effect. In this study, we synthesized a PML hydrogel composite by incorporating zwitterionic hydrogel (PDMAPS) and MIL-101(Cr) as a host for LiCl. The PML hydrogel was characterized using various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The swelling properties and water vapor adsorption-desorption properties of the PML hydrogel were also assessed. The results demonstrate that the MIL-101(Cr) was uniformly embedded into PDMAP hydrogel, and the PML hydrogel exhibits a swelling ratio of 2.29 due to the salting-in behavior. The PML hydrogel exhibited exceptional water vapor sorption capacity of 0.614 g/g at 298 K, RH = 40% and 1.827 g/g at 298 K, RH = 90%. It reached 80% of its saturated adsorption capacity within 117 and 149 min at 298 K, RH = 30% and 90%, respectively. Additionally, the PML hydrogel showed excellent reversibility in terms of water vapor adsorption after ten consecutive cycles of adsorption-desorption. The remarkable adsorption capacity, favorable adsorption-desorption rate, and regeneration stability make the PML hydrogel a potential candidate for AWH. This polymer-MOF synergistic strategy for immobilization of LiCl in this work offers new insights into designing advanced materials for AWH.

10.
Molecules ; 29(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893546

RESUMO

Water scarcity poses a significant challenge for people living in arid areas. Despite the effectiveness of many bioinspired surfaces in promoting vapor condensation, their water-harvesting efficiency is insufficient. This is often exacerbated by overheating, which decreases the performance in terms of the micro-droplet concentration and movement on surfaces. In this study, we used a spotted amphiphilic surface to enhance the surfaces' water-harvesting efficiency while maintaining their heat emissivity. Through hydrophilic particle screening and hydrophobic groove modifying, the coalescence and sliding characteristics of droplets on the amphiphilic surfaces were improved. The incorporation of boron nitride (BN) nanoparticles further enhanced the surfaces' ability to harvest energy from condensation. To evaluate the water-harvesting performance of these amphiphilic surfaces, we utilized a real-time recording water-harvesting platform to identify microscopic weight changes on the surfaces. Our findings indicated that the inclusion of glass particles in hydrophobic grooves, combined with 1.0 wt.% BN nanoparticles, enhanced the water-harvesting efficiency of the amphiphilic surfaces by more than 20%.

11.
Angew Chem Int Ed Engl ; 63(34): e202402446, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38859748

RESUMO

In this study, we successfully developed two novel vinylene-linked covalent organic frameworks (COFs) using 2-connected 3,6-dimethylpyridazine through Knoevenagel condensation. These COFs featured finely tailored micro-/nano-scale pore sizes, high surface areas and stable non-polar vinylene linkages. Finely resolved powder X-ray diffraction patterns demonstrated highly crystalline structures with a hexagonal lattice in the AA layer stacking. The resulting one-dimensional channels possess strong hydrogen-bond accepting sites arising from the decorated cis-azo/azine units with two pairs of fully exposed lone pair electrons, endowing the as-prepared COFs with exceptional water absorption properties. The g-DZPH-COF exhibited successive steep water uptake steps starting from low relative pressures (P/PSTA=0.1), with the remarkable water uptake capacity of 0.26 g/g at P/PSTA=0.2 (25 °C), which is the optimal value recorded among the reported COFs. Dynamic vapour sorption measurements revealed the fast kinetics of these COFs, even in the cluster formation process. Water uptake and release cycling tests demonstrated their outstanding hydrolytic stability, durability, and adsorption-desorption retention ability.

12.
Small ; 19(47): e2303358, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488688

RESUMO

Drought and water scarcity are two of the world's major problems. Solar-powered sorption-based atmospheric water harvesting technology is a promising solution in this category. The main challenge is to design materials with high water harvesting performance while achieving fast water vapor adsorption/desorption rates. Here, a superhydrophilic photothermic hollow nanocapsule (SPHN) is represented that achieves efficient atmospheric water harvesting in outdoor climates. In SPHN, the hollow mesoporous silica (HMS) is grafted with polypyrrole (PPy) and also loaded with lithium chloride (LiCl). The hollow structure is used to store water while preventing leakage. The hydrophilic spherical nanocapsule and the trapped water produce more free and weakly adsorbed water. Significantly lower the heat of desorption compared to pure LiCl solution. Such SPHN significantly improves the adsorption/desorption kinetics, e.g., absorbs 0.78-2.01 g of water per gram of SPHN at 25 °C, relative humidity (RH) 30-80% within 3 h. In particular, SPHN has excellent photothermal properties to achieve rapid water release under natural sunlight conditions, i.e., 80-90% of water is released in 1 h at 0.7-1.0 kW m-2 solar irradiation, and 50% of water is released even at solar irradiation as low as 0.4 kW m-2 . The water collection capacity can reach 1.2 g g-1 per cycle by using the self-made atmospheric water harvesting (AWH) device. This finding provides a way to design novel materials for efficient water harvesting tasks, e.g., water engineering, freshwater generator, etc.

13.
Small ; 19(50): e2304562, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621031

RESUMO

The availability of freshwater is rapidly declining due to over-exploitation and climate change, with multiple parts of the globe already facing significant freshwater scarcity. Here, a sulfonated hypercrosslinked polymer able to repeatedly harvest significant amounts of water via direct air capture is reported. Water uptake from relative humidities as low as 10% is demonstrated, mimicking some of the harshest environments on Earth. A water harvesting device is used to show repeated uptake and harvesting without significant detriment to adsorbent performance. Desorption is triggered using simulated sunlight, presenting a low-energy route to water harvesting and adsorbent regeneration. The synthesis of sulfonated hypercrosslinked polymer requires only low-cost and readily available reagents, offering excellent potential for scale-up. Due to an almost limitless supply of water vapor from air in most regions around the globe, this approach can transform our ability to address water security concerns.

14.
Small ; 19(37): e2301561, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37096929

RESUMO

Atmospheric water harvesting is considered a viable source of freshwater to alleviate water scarcity in an arid climate. Water condensation tends to be more efficient on superhydrophobic surfaces as the spontaneous coalescence-induced droplet jumping on superhydrophobic surfaces enables faster condensate removal. However, poor water nucleation on these surfaces leads to meager water harvest. A conventional approach to the problem is to fabricate micro- and nanoscale biphilic structures. Nonetheless, the process is complex, expensive, and difficult to scale. Here, the authors present an inexpensive and scalable method based on manipulating the water-repellent coatings of superhydrophobic surfaces. Flexible siloxane can facilitate water nucleation, while a branched structure promotes efficient droplet jumping. Moreover, ToF-SIMS analysis indicated that branched siloxane provides a better water-repellent coating coverage than linear siloxane and the siloxanes comprise hydrophilic and hydrophobic molecular segments. Thus, the as-prepared superhydrophobic surface, TiO2 nanorods coated with branched siloxanes harvested eight times more water than a typical fluoroalkylsilane (FAS)-coated surface under a low 30% relative humidity and performed better than most reported biphasic materials.

15.
Chemistry ; 29(54): e202301929, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37429820

RESUMO

Moisture harvesters with favourable attributes such as easy synthetic availability and good processability as alternatives for atmospheric moisture harvesting (AWH) are desirable. This study reports a novel nonporous anionic coordination polymer (CP) of uranyl squarate with methyl viologen (MV2+ ) as charge balancing ions (named U-Squ-CP) which displays intriguing sequential water sorption/desorption behavior as the relative humidity (RH) changes gradually. The evaluation of AWH performance of U-Squ-CP shows that it can absorb water vapor under air atmosphere at a low RH of 20 % typical of the levels found in most dry regions of the world, and have good cycling durability, thus demonstrating the capability as a potential moisture harvester for AWH. To the authors' knowledge, this is the first report on non-porous organic ligand bridged CP materials for AWH. Moreover, a stepwise water-filling mechanism for the water sorption/desorption process is deciphered by comprehensive characterizations combining single-crystal diffraction, which provides a reasonable explanation for the special moisture harvesting behaviour of this non-porous crystalline material.

16.
Chemistry ; 29(68): e202302399, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37718650

RESUMO

Developing materials to harvest water from the air is of great importance to alleviate the water shortage for people living in arid regions, where the annual average relative humidity (RH) is lower than 0.4. In this work, we report a general nitrogen atom incorporation strategy to prepare high-performance covalent organic frameworks (COFs) for water harvesting from the air in arid areas. A series of COFs, namely COF-W1, COF-W2, and COF-W3 were developed for this purpose. Different contents of nitrogen were embedded into COFs by incorporating pyridine units into the building blocks. With the increasing content of nitrogen from COF-W1 to COF-W3, the inflection points of their water isotherms shift distinctly from RH values from 0.65 to 0.25. Significantly, COF-W3 exhibits the lowest inflection point at a low RH value of 0.25 and reaches a high uptake capacity of 0.28 g g-1 at 25 °C with a low hysteresis loop. Moreover, the gram-scale COF-W3 retains its high performance, which renders it more attractive in water harvesting. This work demonstrates the feasibility of this nitrogen incorporation strategy to acquire high-performance COFs as water harvesters in the future.

17.
Macromol Rapid Commun ; 44(11): e2200751, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36413748

RESUMO

Emissive covalent organic frameworks (COFs) have recently emerged as next-generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so-called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well-defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D-COF (COF-SMU-1) featuring free uncondensed aldehyde groups is reported. In particular, COF-SMU-1 features a dual-pore architecture with an overall bex net topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics of COF-SMU-1 are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water-harvesting properties of COF-SMU-1 are revealed using FT-IR and water sorption studies.The findings will not only lead to in-depth understanding of structure-property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid-state lighting and water harvesting.


Assuntos
Estruturas Metalorgânicas , Água , Espectroscopia de Infravermelho com Transformada de Fourier , Aldeídos , Solventes
18.
Chem Eng J ; 466: 143330, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37193347

RESUMO

In recent years, with the outbreak and epidemic of the novel coronavirus in the world, how to obtain clean water from the limited resources has become an urgent issue of concern to all mankind. Atmospheric water harvesting technology and solar-driven interfacial evaporation technology have shown great potential in seeking clean and sustainable water resources. Here, inspired by a variety of organisms in nature, a multi-functional hydrogel matrix composed of polyvinyl alcohol (PVA), sodium alginate (SA) cross-linked by borax as well as doped with zeolitic imidazolate framework material 67 (ZIF-67) and graphene owning macro/micro/nano hierarchical structure has successfully fabricated for producing clean water. The hydrogel not only can reach the average water harvesting ratio up to 22.44 g g-1 under the condition of fog flow after 5 h, but also be capable of desorbing the harvested water with water release efficiency of 1.67 kg m-2 h-1 under 1 sun. In addition to excellent performance in passive fog harvesting, the evaporation rate over 1.89 kg m-2 h-1 is attained under 1 sun on natural seawater during long-term. This hydrogel indicates its potential in producing clean water resources in multiple scenarios in different dry or wet states, and which holds great promise for flexible electronic materials and sustainable sewage or wastewater treatment applications.

19.
Nano Lett ; 22(7): 2618-2626, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35364813

RESUMO

Atmospheric water harvesting (AWH) has received tremendous interest because of population growth, limited freshwater resources, and water pollution. However, key challenges remain in developing efficient, flexible, and lightweight AWH materials with scalability. Here, we demonstrated a radiative cooling fabric for AWH via its hierarchically structured cellulose network and hybrid sorption-dewing mechanisms. With 8.3% solar absorption and ∼0.9 infrared (IR) emissivity, the material can drop up to 7.5 °C below ambient temperature without energy consumption via radiative cooling. Water adsorption onto the hydrophilic functional groups of cellulose is dominated by sorption at low relative humidity (RH) and dewing at high RH. The cellulose network provides desirable mechanical properties with entangled high-aspect-ratio fibers over tens of adsorption-extraction cycles. In the field test, the cellulose sample exhibited water uptake of 1.29 kg/kg at 80% RH during the night. The profusion of radiative cooling fabric features desirable cost effectiveness and allows fast deployment into large-scale AWH applications.


Assuntos
Celulose , Água , Temperatura Baixa , Transição de Fase , Têxteis
20.
Angew Chem Int Ed Engl ; 62(36): e202307674, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37439285

RESUMO

Herein, we report the synthesis of a nitrone-linked covalent organic framework, COF-115, by combining N, N', N', N'''-(ethene-1, 1, 2, 2-tetrayltetrakis(benzene-4, 1-diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid-state 13 C multi cross-polarization magic angle spinning NMR spectroscopy of the 13 C-isotope-labeled COF-115 and Fourier-transform infrared spectroscopy. The permanent porosity of COF-115 was evaluated through low-pressure N2 , CO2 , and H2 sorption experiments. Water vapor and carbon dioxide sorption analysis of COF-115 and the isoreticular imine-linked COF indicated a superior potential of N-oxide-based porous materials for atmospheric water harvesting and CO2 capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF-115 to the associated amide-linked material was successfully demonstrated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa