Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 41(30): 2591-2597, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32905633

RESUMO

Partial atomic charges are important force field parameters. They are usually computed by applying quantum-chemical calculations and the assumed population scheme. In this study polarization consistent scheme of deriving a charge distribution inside solute molecule is proposed. The environment effect is explicitly taken into account by distributing solvent molecules around the solute target. The performed analysis includes a few computational schemes (HF, MP2, B3LYP, and M026X), basis sets (cc-pvnz, n = 2, 3, …, 6), and electrostatically derived charge distributions (KS, CHELP, CHELPG, and HLY). It is demonstrated that the environment effect is very important and cannot be disregarded. The second solvation shell should be included to achieve the charge convergence. Huge corrections to charge distribution are due to induction and dispersion. The B3LYP/cc-pvqz level of theory is recommended for deriving the charges within self-consistent polarization scheme.

2.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859072

RESUMO

Intrinsically disordered proteins (IDPs) are molecules without a fixed tertiary structure, exerting crucial roles in cellular signalling, growth and molecular recognition events. Due to their high plasticity, IDPs are very challenging in experimental and computational structural studies. To provide detailed atomic insight in IDPs' dynamics governing their functional mechanisms, all-atom molecular dynamics (MD) simulations are widely employed. However, the current generalist force fields and solvent models are unable to generate satisfactory ensembles for IDPs when compared to existing experimental data. In this work, we present a new solvation model, denoted as the Charge-Augmented Three-Point Water Model for Intrinsically Disordered Proteins (CAIPi3P). CAIPi3P has been generated by performing a systematic scan of atomic partial charges assigned to the widely popular molecular scaffold of the three-point TIP3P water model. We found that explicit solvent MD simulations employing CAIPi3P solvation considerably improved the small-angle X-ray scattering (SAXS) scattering profiles for three different IDPs. Not surprisingly, this improvement was further enhanced by using CAIPi3P water in combination with the protein force field parametrized for IDPs. We also demonstrated the applicability of CAIPi3P to molecular systems containing structured as well as intrinsically disordered regions/domains. Our results highlight the crucial importance of solvent effects for generating molecular ensembles of IDPs which reproduce the experimental data available. Hence, we conclude that our newly developed CAIPi3P solvation model is a valuable tool for molecular simulations of intrinsically disordered proteins and assessing their molecular dynamics.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Solventes/química , Água/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
J Environ Manage ; 253: 109689, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654929

RESUMO

Sponge City concept is emerging as a new kind of integrated urban water systems, which aims to address urban water problems. However, its implementation has encountered a variety of challenges. The lack of an integrated comprehensive model to assist Sponge City planning, implementation and life cycle assessment is one of the most challenging factors. This review briefly analyses the opportunity of existing urban water management models and discusses the limitation of recent studies in the application of current integrated models for Sponge City implementation. Furthermore, it proposes a new Sponge City model framework by integrating four main sub-models including MIKE-URBAN, LCA, W045-BEST, and MCA in which environmental, social, and economic aspects of Sponge City infrastructure options are simulated. The new structure of Sponge City model that includes the sub-model layer, input layer, module layer, output layer, and programing language layer is also illustrated. Therefore, the proposed model could be applied to optimize different Sponge City practices by not only assessing the drainage capacity of stormwater infrastructure but also pays attention to multi-criteria analysis of urban water system (including the possibility of assessing Sponge City ecosystem services for urban areas and watershed areas) as well. Balancing between simplification and innovation of integrated models, increasing the efficiency of spatial data sharing systems, defining the acceptability of model complexity level and improving the corporation of multiple stakeholders emphasizing on possible future directions of a proper Sponge City design and construction model.


Assuntos
Planejamento de Cidades , Ecossistema , Cidades , Poluição da Água
4.
Sci Rep ; 14(1): 17565, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080369

RESUMO

The article presents the results of research carried out using a water model of a refining ladle for the Fe-Si ferroalloys treatment. These studies were aimed at improving the efficiency of refining and homogenization of liquid Fe-Si ferroalloy in the refining ladle by using a new method of blowing gas through a system of nozzles installed at the bottom of the ladle. The obtained results allowed to determine the proper location of the plug at the bottom of the refining ladle and the possibility of using combined blowing. The tests were carried out for a refining ladle with a capacity of 3 m3 using a physical model on a linear scale of 1:3. The gas flow rate used in the model corresponded proportionally to the value previously used in industrial practice and amounted to 26.8 l/min. Experiments were performed for both combined blowing applications and through a purging plug at the bottom of the ladle. In the case of combined blowing, the volume of the gas stream was divided into two blowing sources (lance and purging plug). As a result of laboratory tests, one of the variants was selected and tested in industrial conditions. These studies confirmed the improvement in the efficiency of refining treatment of the FeSi alloy in terms of reducing the carbon and aluminum content in the alloy.x.

5.
Adv Colloid Interface Sci ; 304: 102659, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35421637

RESUMO

The surface of pulmonary alveolar subphase is covered with a mixture of lipids and proteins. This lung surfactant plays a crucial role in lung functioning. It shows a complex phase behavior which can be altered by the interaction with third molecules such as drugs or pollutants. For studying multicomponent biological systems, it is of interest to couple experimental approach with computational modelling yielding atomic-scale information. Simple two, three, or four-component model systems showed to be useful for getting more insight in the interaction between lipids, lipids and proteins or lipids and proteins with drugs and impurities. These systems were studied theoretically using molecular dynamic simulations and experimentally by means of the Langmuir technique. A better understanding of the structure and behavior of lung surfactants obtained from this research is relevant for developing new synthetic surfactants for efficient therapies, and may contribute to public health protection.


Assuntos
Simulação de Dinâmica Molecular , Surfactantes Pulmonares , Lipídeos , Pulmão/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo
6.
Front Mol Biosci ; 9: 958175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387274

RESUMO

This study investigates possible structural changes of an intrinsically disordered protein (IDP) when it adsorbs to a solid surface. Experiments on IDPs primarily result in ensemble averages due to their high dynamics. Therefore, molecular dynamics (MD) simulations are crucial for obtaining more detailed information on the atomistic and molecular levels. An evaluation of seven different force field and water model combinations have been applied: (A) CHARMM36IDPSFF + CHARMM-modified TIP3P, (B) CHARMM36IDPSFF + TIP4P-D, (C) CHARMM36m + CHARMM-modified TIP3P, (D) AMBER99SB-ILDN + TIP3P, (E) AMBER99SB-ILDN + TIP4P-D, (F) AMBERff03ws + TIP4P/2005, and (G) AMBER99SB-disp + disp-water. The results have been qualitatively compared with those of small-angle X-ray scattering, synchrotron radiation circular dichroism spectroscopy, and attenuated total reflectance Fourier transform infrared spectroscopy. The model IDP corresponds to the first 33 amino acids of the N-terminal of the magnesium transporter A (MgtA) and is denoted as KEIF. With a net charge of +3, KEIF is found to adsorb to the anionic synthetic clay mineral Laponite® due to the increase in entropy from the concomitant release of counterions from the surface. The experimental results show that the peptide is largely disordered with a random coil conformation, whereas the helical content (α- and/or 310-helices) increased upon adsorption. MD simulations corroborate these findings and further reveal an increase in polyproline II helices and an extension of the peptide conformation in the adsorbed state. In addition, the simulations provided atomistic resolution of the adsorbed ensemble of structures, where the arginine residues had a high propensity to form hydrogen bonds with the surface. Simulations B, E, and G showed significantly better agreement with experiments than the other simulations. Particularly noteworthy is the discovery that B and E with TIP4P-D water had superior performance to their corresponding simulations A and D with TIP3P-type water. Thus, this study shows the importance of the water model when simulating IDPs and has also provided an insight into the structural changes of surface-active IDPs induced by adsorption, which may play an important role in their function.

7.
ACS Nano ; 15(4): 7053-7064, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33739081

RESUMO

Self-assembling cyclic peptide nanotubes can form nanopores when they are inserted in lipid bilayers, acting as ion and/or water permeable channels. In order to improve the versatility of these systems, it is possible to specifically design cyclic peptides with a combination of natural and non-natural amino acids, enabling the control of the nature of the inner cavity of the channels. Here, the behavior of two types of self-assembling peptide motifs, alternating α-amino acids with γ- or δ-aminocycloalkanecarboxylic acids, is studied via molecular dynamics (MD) simulations. The behavior of water molecules in nanopores is expected to affect the properties of these channels and therefore merits detailed examination. A number of water models commonly used in MD simulations have been validated by how well they reproduce bulk water properties. However, it is less clear how these water models behave in the nanoconfined condition inside a channel. The behavior of four different water models-TIP3P, TIP4P, TIP4P/2005, and OPC-are evaluated in MD simulations of self-assembled cyclic peptide nanotubes of distinct composition and diameter. The dynamic behavior of the water molecules and ions in these designed artificial channels depends subtly on the water model used. TIP3P water molecules move faster than those of TIP4P, TIP4P/2005, and OPC. This demeanor is clearly observed in the filling of the nanotube, in water diffusion within the pore, and in the number and stability of hydrogen bonds of the peptides with water. It was also shown that the water model influences the simulated ion flux through the nanotubes, with TIP3P producing the greatest ion flux. Additionally, the two more recent models, TIP4P/2005 and OPC, which are known to reproduce the experimental self-diffusion coefficient of bulk water quite well, exhibit very similar results under the nanoconfined conditions studied here. Because none of these models have been parametrized specifically for waters confined in peptide nanotubes, this study provides a point of reference for further validation.


Assuntos
Nanotubos de Peptídeos , Nanotubos , Simulação de Dinâmica Molecular , Peptídeos Cíclicos , Água
8.
J Magn Reson ; 323: 106891, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33445107

RESUMO

Molecular dynamics (MD) trajectories provide useful insights into molecular structure and dynamics. However, questions persist about the quantitative accuracy of those insights. Experimental NMR spin relaxation rates can be used as tests, but only if relaxation superoperators can be efficiently computed from MD trajectories - no mean feat for the quantum Liouville space formalism where matrix dimensions quadruple with each added spin 1/2. Here we report a module for the Spinach software framework that computes Bloch-Redfield-Wangsness relaxation superoperators (including non-secular terms and cross-correlations) from MD trajectories. Predicted initial slopes of nuclear Overhauser effects for sucrose trajectories using advanced water models and a force field optimised for glycans are within 25% of experimental values.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Sacarose/química , Água/química , Valor Preditivo dos Testes
9.
J Mol Graph Model ; 88: 160-167, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30708282

RESUMO

The short-range combined water model (SRCW model) for the calculation of the hydration free energy of the non-polar solutes is presented. A mixed explicit/implicit representation of the solvent is used in the model. A thermodynamic basis for the boundary potential between explicit and implicit parts of the simulation area is derived. A simple functional form for the boundary potential minimizing the water density fluctuations in the explicit part is found. Hydration free energies of the model solutes are calculated in the frame of the developed model. Obtained values are in the good agreement with results of the Monte Carlo simulation using the periodic boundary conditions.


Assuntos
Modelos Químicos , Modelos Moleculares , Água/química , Algoritmos , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Soluções , Solventes , Termodinâmica
10.
Methods Mol Biol ; 1762: 389-402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594782

RESUMO

Water molecules in the binding site of a protein significantly influence protein structure and function, for example, by mediating protein-ligand interactions or in form of desolvation as driving force for ligand binding. The knowledge about location and thermodynamic properties of water molecules in the binding site is crucial to the understanding of protein function. This chapter describes the method of calculating the location and thermodynamic properties of bound water molecules from molecular dynamics (MD) simulation trajectories. Thermodynamic profiles of water molecules can be calculated either with or without the presence of a bound ligand based on the scientific problem. The location and thermodynamic profile of hydration sites mediating the protein-ligand interactions is important for understanding protein-ligand binding. The protein desolvation free energy can be estimated for any ligand by summation of the hydration site free energies of the displaced hydration sites. The WATsite program with an easy-to-use graphical user interface (GUI) based on PyMOL was developed for those calculations and is discussed in this chapter. The WATsite program and its PyMOL plugin are available free of charge from http://people.pharmacy.purdue.edu/~mlill/software/watsite/version3.shtml .


Assuntos
Proteínas/metabolismo , Água/química , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/química , Software , Termodinâmica , Água/metabolismo , Navegador
11.
Appl Radiat Isot ; 83 Pt B: 115-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23415103

RESUMO

Molecular dynamics simulations are carried out for calculating structural and transport properties of pure liquid water, such as radial distribution functions and self-diffusion and viscosity coefficients, respectively. We employed reparameterized versions of the ab initio water potential by Niesar, Clementi and Corongiu (NCC). In order to investigate the role of the electrostatic contribution, the partial charges of the NCC model are adjusted so that to reproduce the dipole moment values of the SPC/E, SPC/Fw and TIP4P/2005 water models. The single and collective transport coefficients are obtained by employing the Green-Kubo relations at various temperatures. Additionally, in order to overcome convergence difficulties arising from the long correlation times of the stress-tensor autocorrelation functions, a previously reported fitting scheme was employed. The present results indicate that there is a significant relationship between the dipole moment value of the model, and the calculated transport coefficients. We found that by adjusting the molecular dipole moment of the NCC to the value of the TIP4P/2005, the obtained values for the self-diffusion and viscosity coefficients are in better agreement with experiment, compared to the values obtained with the original NCC model. Even though the predictions of the present model exhibits an overall correct behavior, we conclude that further improvements are still required. In order to achieve that, a careful reparameterization of the repulsion-dispersion terms of the potential model is proposed. Also, the effect of the inclusion of many-body effects such as polarizability, should also be investigated.

12.
J Phys Chem Lett ; 5(1): 138-42, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276193

RESUMO

The existence of a density maximum at 277 K is probably the most prominent anomaly among the many very special thermodynamic properties of liquid water. While usually attributed to so-called hydrogen bonding, the microscopic physical cause of this prominent anomaly is still elusive. Here we show that the density anomaly is caused by those short-range electrostatic forces, which are generated by the quadrupole and higher moments of the charge distributions present in liquid-phase water molecules. This conclusion derives from 20 ns replica exchange molecular-dynamics simulations with closely related polarizable four-, five-, and six-point water models. As soon as the model complexity suffices to represent the higher electrostatic moments with sufficient accuracy, the density temperature profile n(T) calculated for T ∈ [250,320] K at the standard pressure 1 bar locks in to the experimental observation. The corresponding six-point model is, therefore, the most simple available cartoon for liquid-phase water molecules.

13.
Methods Enzymol ; 532: 3-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188760

RESUMO

The existence of an accurate force field (FF) model that reproduces the free-energy landscape is a key prerequisite for the simulation of biomineralization. Here, the stages in the development of such a model are discussed including the quality of the water model, the thermodynamics of polymorphism, and the free energies of solvation for the relevant species. The reliability of FFs can then be benchmarked against quantities such as the free energy of ion pairing in solution, the solubility product, and the structure of the mineral-water interface.


Assuntos
Carbonato de Cálcio/metabolismo , Modelos Biológicos , Carbonato de Cálcio/química , Cristalização , Simulação de Dinâmica Molecular , Método de Monte Carlo , Transição de Fase , Solubilidade , Soluções , Solventes/química , Propriedades de Superfície , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa