Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Environ Sci Technol ; 57(31): 11520-11530, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491875

RESUMO

Applying the planetary boundary for the freshwater framework at the regional level is important in supporting local water management but is subject to substantial uncertainty. Previous estimates have not fully investigated the potential of trade in mitigating regional freshwater boundary (RFB) exceedance. Here, we estimate RFB based on the average results of 15 different hydrological models to reduce uncertainty. We then propose a framework to divide the RFB exceedance/maintenance into contributions from both consumption and trade and further identify trade contribution into six types. We applied the framework to China's provinces, which are characterized by intensive interprovincial trade and a significant mismatch in water resource supply and demand. We found that the current trade pattern limits the role of trade to mitigate RFB exceedance. For the importing provinces exceeding RFBs, 78% of their imported goods and services came from other RFB exceeding provinces. Scenario analysis showed that relying on increased imports alone, even to its greatest extent, will not reverse RFB exceedance in most importing provinces. Increased imports, however, will have an aggregate effect on the trade partners, leading to the exceedance of the national freshwater boundary. We also found that promoting export of goods and services from non-RFB exceeding provinces and reducing their water intensity will help address the imbalance both locally and, in the aggregate, nationally.


Assuntos
Água Doce , Abastecimento de Água , Água , China
2.
Proc Natl Acad Sci U S A ; 117(47): 29526-29534, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168728

RESUMO

Climate change is expected to affect crop production worldwide, particularly in rain-fed agricultural regions. It is still unknown how irrigation water needs will change in a warmer planet and where freshwater will be locally available to expand irrigation without depleting freshwater resources. Here, we identify the rain-fed cropping systems that hold the greatest potential for investment in irrigation expansion because water will likely be available to suffice irrigation water demand. Using projections of renewable water availability and irrigation water demand under warming scenarios, we identify target regions where irrigation expansion may sustain crop production under climate change. Our results also show that global rain-fed croplands hold significant potential for sustainable irrigation expansion and that different irrigation strategies have different irrigation expansion potentials. Under a 3 °C warming, we find that a soft-path irrigation expansion with small monthly water storage and deficit irrigation has the potential to expand irrigated land by 70 million hectares and feed 300 million more people globally. We also find that a hard-path irrigation expansion with large annual water storage can sustainably expand irrigation up to 350 million hectares, while producing food for 1.4 billion more people globally. By identifying where irrigation can be expanded under a warmer climate, this work may serve as a starting point for investigating socioeconomic factors of irrigation expansion and may guide future research and resources toward those agricultural communities and water management institutions that will most need to adapt to climate change.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Mudança Climática , Clima , Produção Agrícola/métodos , Chuva , Água/química , Abastecimento de Água
3.
J Environ Manage ; 343: 118163, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247546

RESUMO

The sustainability of industrial production, especially for highly water-demanding processes, is strictly related to water resource availability and to the dynamic interactions between natural and anthropogenic requirements over the spatial and temporal scales. The increase in industrial water demand raises the need to assess the related environmental sustainability, facing the occurrence of global and local water stress issues. The identification of reliable methodologies, based on simple indices and able to consider the impact on local water basins, may play a basilar role in water sustainability diagnosis and decision-making processes for water management and land use planning. The present work focalized on the definition of a methodology based on the calculation of indicators and indices in the view of providing a synthetic, simple, and site-specific assessment tool for industrial water cycle sustainability. The methodology was built starting from geo-referenced data on water availability and sectorial uses derived for Italian sub-basins. According to the data monthly time scale, the proposed indices allowed for an industrial water-related impacts assessment, able to take into account the seasonal variability of local resources. Three industrial factories, located in northern (SB1, SB2) and central (SB3) Italian sub-basins, were selected as case studies (CS1, CS2, CS3) to validate the methodology. The companies were directly involved and asked to provide some input data. The methodology is based on the calculation of three synthetic indexes: the Withdrawal and Consumption water Stress Index (WCSI) allowed for deriving a synthetic water stress level assessment at the sub-basin scale, also considering the spatial and temporal variations; the industrial water use sustainability assessment was achieved by calculating the Overall Factory-to-Basin Impact (OFBI) and the Internal Water Reuse (IWR) indices, which allowed a preliminary evaluation of the factories' impacts on the sub-basin water status, considering the related water uses and the overall pressures on the reference territorial context. The WCSI values highlighted significant differences between the northern sub-basins, characterised by limited water stress (WCSISB1 = 0.221; WCSISB2 = 0.047), and the central ones, more subjected to high stress (WCSISB3 = 0.413). The case studies CS1 and CS3 showed to exert a more significant impact on the local water resource (OFBICS1 = 0.18%; OFBICS2 = 0.192%) with respect to CS2 (OFBI = 0.002%), whereas the IWR index revealed the different company's attitude in implementing water reuse practices (IWRCS1 = 40%; IWRCS1 = 27%; IWRCS1 = 99%). The proposed methodology and the indices may also contribute to assessing the effectiveness of river basin management actions to pursue sustainable development goals.


Assuntos
Desidratação , Recursos Hídricos , Humanos , Rios , Desenvolvimento Sustentável
4.
Proc Natl Acad Sci U S A ; 116(11): 4893-4898, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804199

RESUMO

Green water--rainfall over land that eventually flows back to the atmosphere as evapotranspiration--is the main source of water to produce food, feed, fiber, timber, and bioenergy. To understand how freshwater scarcity constrains production of these goods, we need to consider limits to the green water footprint (WFg), the green water flow allocated to human society. However, research traditionally focuses on scarcity of blue water--groundwater and surface water. Here we expand the debate on water scarcity by considering green water scarcity (WSg). At 5 × 5 arc-minute spatial resolution, we quantify WFg and the maximum sustainable level to this footprint (WFg,m), while accounting for green water requirements to support biodiversity. We then estimate WSg per country as the ratio of the national aggregate WFg to the national aggregate WFg,m We find that globally WFg amounts to 56% of WFg,m, and overshoots it in several places, for example in countries in Europe, Central America, the Middle East, and South Asia. The sustainably available green water flows in these countries are mostly or fully allocated to human activities (predominately agriculture and forestry), occasionally at the cost of green water flows earmarked for nature. By ignoring limits to the growing human WFg, we risk further loss of ecosystem values that depend on the remaining untouched green water flows. We emphasize that green water is a critical and limited resource that should explicitly be part of any assessment of water scarcity, food security, or bioenergy potential.


Assuntos
Biocombustíveis , Alimentos , Chuva , Recursos Hídricos , Madeira , Geografia , Humanos
5.
Environ Geochem Health ; 44(3): 993-1013, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34129136

RESUMO

This study aims to formulate and fabricate the optimum condition of modified kenaf core (MKC) for the removal of targeted endocrine-disrupting compounds in a batch adsorption system. Kenaf core was chemically modified using phosphoric acid as an activating agent, which involved the pyrolysis step. Results indicated a significant difference (p < 0.05) for unmodified and novel modified biochar, observed in characteristic performance analysis via ultimate analysis, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR) spectrum, and Brunauer-Emmett-teller (BET) surface area. The removal percentage of 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2) in individual and binary mixture systems was examined in order to ascertain the highest removal percentage for MKC application in an aqueous solution. The main and interaction effects of three prepared variables such as incorporate of impregnation concentration of an acid catalyst (0.1-1.0 M), particle size (45-1,000 µm), and dosage (1.0-20.0 g/L) were examined and statistically analyzed via design of experiment (DoE) through developed quadratic models. The removal efficiency of E2 and EE2 in an individual system leads to T2KC > T1KC > T3KC, whereas that in the binary mixture system leads to T2KC > T1KC > T3KC and T1KC > T2KC > T3KC for E2 and EE2 adsorption, respectively, through hydrogen bonding and the π-π interaction mechanism. Thus, the findings revealed T2KC at a moderate level of acid concentration (0.5 M H3PO4) to be a potential biochar, with an environmentally safe and sound profile for opposing emerging pollutant issues as well as for the attainment of sustainable development goals.


Assuntos
Disruptores Endócrinos , Hibiscus , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Disruptores Endócrinos/análise , Cinética , Poluentes Químicos da Água/análise
6.
Environ Res ; 201: 111527, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34157270

RESUMO

The water resource is an essential field of economic growth, social progress, and environmental integrity. A novel solution is offered to meet water needs, distribution, and IoT-based quality management requirements. With technological growth, this paper presents an IoT-enabled Water Resource Management and Distribution Monitoring System (IWRM-DMS) using sensors, gauge meters, flow meters, ultrasonic sensors, motors to implement in rural cities. Thus, research proposes that the IWRM-DMS establish the rural demand for water and the water supply system to minimize water demand. The system proposed includes different sensors, such as the water flow sensor, the pH sensor, the water pressure valve, the flow meters, and ultrasound sensors. This water system has been developed, which addresses the demand for domestic water in the village. Machine Intelligence has been designed for demand prediction in the decision support system. The simulation results confirm the applicability of the proposed framework in real-time environments. The proposed IWRM-DMS has been proposed to analyse the water quality to ensure water distribution in a rural area to achieve less MAPE (21.41%) and RMSE(15.12%), improve efficiency (96.93%), Reliability (98.24%), enhance prediction (95.29%)), the overall performance (97.34%), moisture content ratio (7.4%), cost-effectiveness ratio (95.7%) when compared to other popular methods.


Assuntos
Recursos Hídricos , Água , Reprodutibilidade dos Testes , Qualidade da Água , Abastecimento de Água
7.
J Environ Manage ; 293: 112846, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058456

RESUMO

Water security is an issue across the world as communities face ageing infrastructure, population increases and climate change. The application of digital water metering (DWM) to properties has had a demonstrable impact on water savings at the property and network levels, on efficiencies within water utilities, as well as on improvements to customer satisfaction scores. Gathering and processing near-real-time water usage data is very important for both end-users and utilities, as well as demand and supply management planning. The potential contribution of DWM to the three pillars of water sustainability (environmental, economic development and social equity) is often overlooked. In Australia and other jurisdictions water utilities are facing up to the challenge of climate change. However, business cases promoting DWM are often unsuccessful because the benefit side falls short of the cost side. This study sought to identify possible DWM benefits not previously considered through an extensive review of academic and industry literature, and then to view those benefits through the lens of sustainability. The 77 identified benefits of DWM were catalogued and a taxonomy was created. The study elicited the opinions of experts, before quantifying them, thus identifying two distinct contexts of benefit value; subsequently, it surveyed the views of customers and developed a stochastic model of benefit value. The model, named DWM360, was applied to the project data of a large metropolitan water utility in Australia to model their DWM proposal for cost savings, contribution to sustainability and uplift in customer satisfaction. This paper presents a novel focus on how the benefits of DWM assist water sustainability. It considers differing social norms that impact consumer acceptance of changes in metering and water charges. The study will be of interest to researchers as well as practitioners looking to identify sustainability aspects of DWM.


Assuntos
Abastecimento de Água , Água , Austrália , Mudança Climática , Comércio
8.
Molecules ; 25(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260409

RESUMO

Nanostructured gels have emerged as an attractive functional material to innovate the field of energy, with applications ranging from extraction and purification to nanocatalysts with unprecedented performance. In this review we discuss the various classes of nanostructured gels and the most recent advancements in the field with a perspective on future directions of this challenging area.


Assuntos
Géis/química , Nanoestruturas/química , Catálise , Meio Ambiente , Géis/síntese química , Fenômenos Físicos , Polímeros/síntese química , Polímeros/química , Reciclagem/métodos , Purificação da Água/métodos
9.
Proc Natl Acad Sci U S A ; 113(17): 4591-6, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080611

RESUMO

Managing water for sustainable use and economic development is both a technical and a governance challenge in which knowledge production and sharing play a central role. This article evaluates and compares the role of participatory governance and scientific information in decision-making in four basins in Brazil, Mexico, Thailand, and the United States. Water management institutions in each of the basins have evolved during the last 10-20 years from a relatively centralized water-management structure at the state or national level to a decision structure that involves engaging water users within the basins and the development of participatory processes. This change is consistent with global trends in which states increasingly are expected to gain public acceptance for larger water projects and policy changes. In each case, expanded citizen engagement in identifying options and in decision-making processes has resulted in more complexity but also has expanded the culture of integrated learning. International funding for water infrastructure has been linked to requirements for participatory management processes, but, ironically, this study finds that participatory processes appear to work better in the context of decisions that are short-term and easily adjusted, such as water-allocation decisions, and do not work so well for longer-term, high-stakes decisions regarding infrastructure. A second important observation is that the costs of capacity building to allow meaningful stakeholder engagement in water-management decision processes are not widely recognized. Failure to appreciate the associated costs and complexities may contribute to the lack of successful engagement of citizens in decisions regarding infrastructure.


Assuntos
Conservação dos Recursos Naturais , Recursos Hídricos , Brasil , Participação da Comunidade , Tomada de Decisões , Humanos , Conhecimento , México , Tailândia , Incerteza , Estados Unidos
10.
J Exp Bot ; 66(8): 2253-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25873664

RESUMO

More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.


Assuntos
Irrigação Agrícola , Agricultura , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Abastecimento de Água , China
11.
PNAS Nexus ; 3(9): pgae378, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39285932

RESUMO

Over-exploitation of groundwater for irrigation caused rapid groundwater depletion in north India, leading to food and water security challenges. However, the crucial role of changing cropping patterns on groundwater savings under the observed and projected warming climate remains unexplored. Here, we show that altering the existing rice-dominated cropping systems in India can be a potential solution for groundwater sustainability under the current and future climate. Satellite and model-based estimates show that north India lost ∼336 and 297 km3 of groundwater, respectively during 2002-2022. We developed optimized crop switching scenarios for groundwater savings considering nutritional requirements, farmers' profit, and crop production. Crop switching considering all the three targets (crop switch one: CSI) and allowing rice replacement with alternate crops (crop switch two: CSII) could save 45 and 91 km3 groundwater, respectively in north India during the observed climate (2002-2022) compared with the current cropping pattern. Altering the current cropping pattern can lead to substantial groundwater savings under the projected future climate without comprising nutritional targets and farmers' profit at the state level. Replacing 37% area of rice with other crops (CSII) can recover 61 to 108 km3 groundwater compared with -13 to 43 km3 with current cropping pattern under the 1.5-3 °C global warming levels. Similarly, under the CSI scenario, 36 to 86 km3 groundwater can be recovered in the future warming world. Moreover, the benefits of crop switching in groundwater saving are higher during the prolonged dry periods compared with the baseline under the warming climate. Therefore, crop switching offers substantial benefits for groundwater sustainability under the current and projected future climate in India.

12.
Sci Total Environ ; 913: 169297, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103616

RESUMO

Inter-basin water diversion (IBWD) is a viable strategy to tackle water scarcity and quality degradation due to climate change and increasing water demand in headwaters regions. Nevertheless, the capacity of IBWD to mitigate the impacts of climate change on water quality has rarely been quantified, and the underlying processes are not well understood. Therefore, this study aims to elucidate how the IBWD manipulated total phosphorus (TP) loading dilution and conveying patterns under climate change and determine a critical threshold for the quantity of water entering downstream reservoirs (WIN) for operational scheduling. To resolve this issue, climate-driven hydrologic variability over a 60-year period was derived utilizing the least square fitting approach. Subsequently, six scenarios evaluating the response of in-lake TP concentrations (TPL) to increased temperatures and IBWDs of 50 %, 100 %, and 150 % from the baseline water volume in 2030 and 2050 were studied by employing a calibrated hydrological-water quality model (SWAT-YRWQM). In the next stage, three datasets derived from mathematical statistics based on the observed data, the Vollenweider formula, and modeled projections were integrated to formulate best management practices. The results revealed that elevated air temperatures would lead to reduced annual catchment runoff but increased IBWD. Additionally, our study quantified the IBWD potential for mitigating water quality degradation, indicating the adverse effects of climate change on TPL would be weakened by 4.2-14.4 %. A critical threshold for WIN was also quantified at 617 million m3, maintaining WIN at or near 617 million m3 through optimized operational scheduling of IBWD could effectively restrict external inflow TP loading to lower levels. This study clearly illustrates the intricate interactive effects of climate change and IBWD on aquatic environments. The methodology elucidated in this study for determining the critical threshold of WIN could be applied in water management for analogous watershed-receiving waterbody systems.

13.
Sci Total Environ ; 940: 173589, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823715

RESUMO

Green hydrogen generated via water electrolysis using photovoltaics or wind has begun to scale up in the process of achieving the global net-zero goal, but there is a lack of research on its impact on the scarcity of water resources and water saving potential. A water resources impact assessment framework for green hydrogen scale-up development is established, integrating the product water footprint and regional water footprint scarcity impacts and advancing the study of the water resources impacts on green hydrogen from water conservation as well as from a sustainable context. The research framework specifies the cradle-to-gate life cycle water consumption of hydrogen production, establishes the water scarcity footprint based on the available water remaining (AWARE) model, quantifies the water saving intensity and potential of the green hydrogen alternative to traditional hydrogen production, and proposes quantitative indicators of the water saving benefit. Taking the regions of 31 provinces in China as a case study, the wind-to­hydrogen scenario and the solar-to­hydrogen scenario will generate approximately 68.86×108 m3 and 126.10×108 m3 water scarcity footprints, respectively. Under the coal-to­hydrogen baseline scenario, approximately 1.68×108 m3 and - 0.57×108 m3 of water saving potential will be generated. In addition, the water saving intensity decreases from west to east. According to the adjusted quantitative indicators of water saving benefits, the wind-to­hydrogen scenario in China can reach 40.22×108 m3eq and the water saving benefit is more obvious in northern regions such as Hebei, Ningxia and Inner Mongolia. The methodological framework can be applied to other countries or regions to assess the sustainable impacts of green hydrogen production on water resources in a given region.

14.
Sci Total Environ ; 858(Pt 2): 159697, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334664

RESUMO

The growing increase in groundwater (GW) salinization in the coastal aquifers has reached an alarming socio-economic menace in Saudi Arabia and various places globally due to several natural and anthropogenic activities. Hence, evaluating the GW salinization is paramount to safeguarding the water resources planning and management. This study presents three different scenarios viz.: real field investigation, experimental laboratory analysis (using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), etc.), and artificial intelligence (AI) based metaheuristic optimization (MO) algorithms in Saudi Arabia. The main purpose of this study is to validate the obtained experimental-based analysis using hybrid MO techniques comprising of adaptive neuro-fuzzy inference system (ANFIS) hybridized with genetic algorithm (GA), particle swarm optimization (PSO), and biogeography-based optimization (BBO) for identification of GW salinization in the coastal region of eastern Saudi Arabia. Additionally, ArcGIS 10.3 software generates the prediction map based on ANFIS-GA, ANFIS-PSO, and ANFIS-BBO. Feature selection was assessed using the PSO algorithm, and four indices evaluated the estimated models, namely, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and standard deviation (SD). The simulated results are based on three variable input combinations, which showed that the ANFIS-PSO (MAE = 0.00439) algorithm had the highest accuracy (99 %), followed by the ANFIS-GA (MAE = 0.00767) and ANFIS-BBO (MAE = 0.0132) algorithms. Besides, Ca2+, Na+, Mg2+, and Cl- were the most influential parameters. The accuracy also demonstrated the potential reliability of MO algorithms based on spatial distribution mapping. The employed approach proved to be merit and reliable tool for water resources decision-makers in the coastal aquifer of Saudi Arabia. This approach is believed to improve water scarcity as one of the essential targets for Goal 6 of Sustainable Development Vision 2030 and the Kingdom in general.


Assuntos
Lógica Fuzzy , Água Subterrânea , Inteligência Artificial , Heurística , Arábia Saudita , Reprodutibilidade dos Testes , Algoritmos
15.
Artigo em Inglês | MEDLINE | ID: mdl-36767808

RESUMO

The United Nations and scholars called for more attention and efforts for cleaner water and water sustainability. This study established a water sustainability evaluating method framework, including indicators, goals, and methods and performs provincial and city-level assessments as case studies. The framework involves six fields, surface water quality, marine environmental quality, water-soil-agriculture, water infrastructure, water conservation, aquatic ecology, water-efficient use, and pollutant emission reduction. The methods innovatively integrate multi fields and concerns of water sustainability while providing a goal-oriented evaluation and implementing the United Nations' call for the refinement and clarification of SDGs. China's overall water sustainability was evaluated as 0.821 in 2021, and have performed well in surface water quality, sea quality, water conservation, and aquatic ecology fields while performing poorly in the water-soil-agriculture field. The overall strategy, policy, and action for water sustainability could be developed based on the evaluation. The water sustainability evaluation presented the regional and field/indicator differentiations. It is necessary to implement regionally classified policies and differentiated management for sustainable water development. The correlation analysis with socioeconomic factors implies the complicated and intimate interaction between socioeconomic development and water sustainability while revealing that development stages and the inherent conditions of natural ecology and water sources bring about the differentiations. A comprehensive evaluation of water sustainability may be three-dimensional, involving water quality and ecology, development related to water, and water resources and utilization.


Assuntos
Conservação dos Recursos Naturais , Objetivos , Conservação dos Recursos Naturais/métodos , Desenvolvimento Sustentável , Solo , China
16.
Sci Total Environ ; 879: 163003, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965726

RESUMO

The enormous progress in weather and extended range predictions for the Indian monsoon over the last decade has not been translated to operationalized irrigation water management tools despite many agricultural advisories from operational agencies. The limited implementation is mainly due to the resolution mismatches of forecasts and decision-needs and a lack of soil moisture monitoring networks. Sustained soil moisture monitoring suffers from the high cost to farmers in installing distributed sensors. Here we develop an irrigation water management tool for the farmers at farm scale, which starts with utilizing and merging a few available soil moisture sensors and L-band satellite observations of surface soil moisture using machine learning. Such derived soil moisture field is used as the initial condition with the multi-ensemble future rainfall for the following few weeks given the weather/extended range forecasts in a farm-scale ecohydrological model. This ecohydrological model is integrated with Monte-Carlo simulations within a stochastic optimization framework to minimize water use while not allowing the soil moisture to drop below a threshold level with a certain probability. The optimization results in water arrangement decisions 2 weeks in advance and water application decisions 1-7 days in advance. We also estimate the water storage capacity needed at farm scale for effective water utilization. We find that 20-45 % and 17-35 % water savings were achievable for Kharif and Rabi seasons, respectively, without losing any yield when applied to grape farms of Nashik, Maharashtra, India. The proposed framework is co-developed with the farmers and can be used in any region for any crops, since it is generalized and easy to transfer. This is an extension of our earlier work to an end-to-end system using satellite data for soil moisture.

17.
Environ Sci Pollut Res Int ; 30(6): 14707-14721, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36163570

RESUMO

Rainwater harvesting (RWH) has proven to be an efficient method of curtailing water scarcity by substituting it as an alternative water supply which also helps to mitigate the risk of flooding caused due to heavy rainfall. While overcoming the water-related issues, implementation and identifying potential harvesting sites in urban areas on a large scale has always been challenging, necessitating additional research and constraint considerations. The proposed study implements a basin-wide approach and creates a tool using the geographical information system (GIS) to pinpoint site locations to collect rainstorm water. For determining the feasible number of RWH sites, the scenarios were created by considering the minimum basin area. In addition, the volumetric potential of the identified RWH sites was evaluated using the SCS-CN (Soil Conservation Services Curve Number) method by estimating rainfall runoff volume. The proposed methodology is implemented as a case study on the extended area of Jaipur in India, and the analysis shows that all identified locations lie on the outskirts of the study area, ensuring land availability for developing rainwater harvesting structures. As an outcome, the proposed methodology helps to establish the relationship between the basin area, the number of identified RWH sites, and their volumetric potential, creating a benchmark for further conducting similar studies on other areas.


Assuntos
Conservação dos Recursos Naturais , Chuva , Conservação dos Recursos Naturais/métodos , Abastecimento de Água/métodos , Água , Sistemas de Informação Geográfica
18.
Water Res ; 229: 119442, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473410

RESUMO

Inter-basin water transfer (IBWT) infrastructure has been expanding to deliver water across China to meet water demands in populated and industrial areas. Water scarcity may threaten the ability to produce and distribute goods through supply chains. Yet, it is not clear if IBWTs transmit or buffer water scarcity throughout supply chains. Here we combine a national database of IBWT projects and multi-region input-output analysis to trace water transferred by IBWT and virtual scarce water (scarcity weighted water use) from IBWT sourcing basins to production sites then to end consumers. The results indicate that production and final consumption of sectoral products have been increasingly supported by IBWT infrastructure, with physically transferred water volumes doubling between 2007 and 2017. Virtual scarce water is about half of the virtual water supporting the supply chain of the nation. IBWT effectively reduced virtual scarce water supporting the supply chains of most provinces, with the exposure to water scarcity reduced by a maximum of 56.7% and 15.0% for production and final consumption, respectively. IBWT Infrastructure development can thus buffer water scarcity risk to the supply chain and should be considered in water management and sustainable development policy decisions.


Assuntos
Abastecimento de Água , Água , Insegurança Hídrica , Recursos Hídricos , China
19.
Gels ; 9(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367125

RESUMO

The removal of pharmaceutical contaminants from wastewater has gained considerable attention in recent years, particularly in the advancements of hydrogel-based adsorbents as a green solution for their ease of use, ease of modification, biodegradability, non-toxicity, environmental friendliness, and cost-effectiveness. This study focuses on the design of an efficient adsorbent hydrogel based on 1% chitosan, 40% polyethylene glycol 4000 (PEG4000), and 4% xanthan gum (referred to as CPX) for the removal of diclofenac sodium (DCF) from water. The interaction between positively charged chitosan and negatively charged xanthan gum and PEG4000 leads to strengthening of the hydrogel structure. The obtained CPX hydrogel, prepared by a green, simple, easy, low-cost, and ecological method, has a higher viscosity due to the three-dimensional polymer network and mechanical stability. The physical, chemical, rheological, and pharmacotechnical parameters of the synthesized hydrogel were determined. Swelling analysis demonstrated that the new synthetized hydrogel is not pH-dependent. The obtained adsorbent hydrogel reached the adsorption capacity (172.41 mg/g) at the highest adsorbent amount (200 mg) after 350 min. In addition, the adsorption kinetics were calculated using a pseudo first-order model and Langmuir and Freundlich isotherm parameters. The results demonstrate that CPX hydrogel can be used as an efficient option to remove DCF as a pharmaceutical contaminant from wastewater.

20.
Saudi J Biol Sci ; 29(2): 878-885, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197755

RESUMO

The lack of good irrigation practices and policy reforms in Pakistan triggers major threats to the water and food security of the country. In the future, irrigation will happen under the scarcity of water, as inadequate irrigation water becomes the requirement rather than the exception. The precise application of water with irrigation management is therefore needed. This research evaluated the wheat grain yield and water use efficiency (WUE) under limited irrigation practices in arid and semi-arid regions of Pakistan. DSSAT was used to simulate yield and assess alternative irrigation scheduling based on different levels of irrigation starting from the actual irrigation level up to 65% less irrigation. The findings demonstrated that different levels of irrigation had substantial effects on wheat grain yield and total water consumption. After comparing the different irrigation levels, the high amount of actual irrigation level in semi-arid sites decreased the WUE and wheat grain yield. However, the arid site (Site-1) showed the highest wheat grain yield 2394 kg ha-1 and WUE 5.9 kg-3 on actual irrigation (T1), and with the reduction of water, wheat grain yield decreased continuously. The optimal irrigation level was attained on semi-arid (site-2) with 50% (T11) less water where the wheat grain yield and WUE were 1925 kg ha-1 and 4.47 kg-3 respectively. The best irrigation level was acquired with 40% less water (T9) on semi-arid (site-3), where wheat grain yield and WUE were 1925 kg ha-1 and 4.57 kg-3, respectively. The results demonstrated that reducing the irrigation levels could promote the growth of wheat, resulting in an improved WUE. In crux, significant potential for further improving the efficiency of agricultural water usage in the region relies on effective soil moisture management and efficient use of water.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa