Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 296: 100422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33607109

RESUMO

Despite being initially regarded as a metabolic waste product, lactate is now considered to serve as a primary fuel for the tricarboxylic acid cycle in cancer cells. At the core of lactate metabolism, lactate dehydrogenases (LDHs) catalyze the interconversion of lactate to pyruvate and as such represent promising targets in cancer therapy. However, direct inhibition of the LDH active site is challenging from physicochemical and selectivity standpoints. However, LDHs are obligate tetramers. Thus, targeting the LDH tetrameric interface has emerged as an appealing strategy. In this work, we examine a dimeric construct of truncated human LDH to search for new druggable sites. We report the identification and characterization of a new cluster of interactions in the LDH tetrameric interface. Using nanoscale differential scanning fluorimetry, chemical denaturation, and mass photometry, we identified several residues (E62, D65, L71, and F72) essential for LDH tetrameric stability. Moreover, we report a family of peptide ligands based on this cluster of interactions. We next demonstrated these ligands to destabilize tetrameric LDHs through binding to this new tetrameric interface using nanoscale differential scanning fluorimetry, NMR water-ligand observed via gradient spectroscopy, and microscale thermophoresis. Altogether, this work provides new insights on the LDH tetrameric interface as well as valuable pharmacological tools for the development of LDH tetramer disruptors.


Assuntos
Mapeamento de Epitopos/métodos , L-Lactato Desidrogenase/metabolismo , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/fisiologia , Lactato Desidrogenases/metabolismo , Ácido Láctico/metabolismo , Ligantes , Imageamento por Ressonância Magnética/métodos , Peptídeos/metabolismo
2.
J Enzyme Inhib Med Chem ; 34(1): 1218-1225, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31286785

RESUMO

WaterLOGSY is a sensitive ligand-observed NMR experiment for detection of interaction between a ligand and a protein and is now well-established as a screening technique for fragment-based lead discovery. Here we develop and assess a protocol to derive ligand epitope mapping from WaterLOGSY data and demonstrate its general applicability in studies of fragment-sized ligands binding to six different proteins (glycogen phosphorylase, protein peroxiredoxin 5, Bcl-xL, Mcl-1, HSP90, and human serum albumin). We compare the WaterLOGSY results to those obtained from the more widely used saturation transfer difference experiments and to the 3D structures of the complexes when available. In addition, we evaluate the impact of ligand labile protons on the WaterLOGSY data. Our results demonstrate that the WaterLOGSY experiment can be used as an additional confirmation of the binding mode of a ligand to a protein.


Assuntos
Descoberta de Drogas/métodos , Espectroscopia de Ressonância Magnética/métodos , Sítios de Ligação , Proteínas/química
3.
Proteins ; 85(4): 593-601, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28056492

RESUMO

CDC25 phosphatases play a crucial role in cell cycle regulation. They have been found to be over-expressed in various human tumours and to be valuable targets for cancer treatment. Here, we report the first model of binding of the most potent CDC25 inhibitor to date, the bis-quinone IRC-083864, into CDC25B obtained by combining molecular modeling and NMR studies. Our study provides new insights into key interactions of the catalytic site inhibitor and CDC25B in the absence of any available experimental structure of CDC25 with a bound catalytic site inhibitor. The docking model reveals that IRC-083864 occupies both the active site and the inhibitor binding pocket of the CDC25B catalytic domain. NMR saturation transfer difference and WaterLOGSY data indicate the binding zones of the inhibitor and support the docking model. Probing interactions of analogues of the two quinone units of IRC-083864 with CDC25B demonstrate that IRC-083864 competes with each monomer. Proteins 2017; 85:593-601. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/química , Benzotiazóis/química , Benzoxazóis/química , Inibidores Enzimáticos/química , Fosfatases cdc25/antagonistas & inibidores , Antineoplásicos/síntese química , Benzotiazóis/síntese química , Benzoxazóis/síntese química , Domínio Catalítico , Clonagem Molecular , Inibidores Enzimáticos/síntese química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fosfatases cdc25/química , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
4.
Arch Biochem Biophys ; 628: 132-147, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619618

RESUMO

The use of NMR as a tool to determine 3 dimensional protein solution structures, once a darling of the pharmaceutical industry, has largely given way to study of the interaction of prospective drugs with macromolecular targets. Many of these approaches involve ligand-centered studies, which have the advantage of speed and efficiency, but there are also many approaches that take directly from our learnings in macromolecular NMR and provide greater structural detail yet are still optimized for rapid turn-around of information. In the evolution of NMR in the pharmaceutical industry, the unique strengths of NMR to provide dynamic and atomic level information continue to be exploited to discover and design new drugs. Numerous methods have been developed over the past two decades that fall into the categories of fragment-based pre-lead discovery, ligand binding studies and qualitative structural screening.


Assuntos
Desenho de Fármacos , Espectroscopia de Ressonância Magnética/métodos , Avaliação Pré-Clínica de Medicamentos , Ligantes
5.
J Biomol NMR ; 64(3): 255-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26921030

RESUMO

The membrane proteins of viruses play critical roles in the virus life cycle and are attractive targets for therapeutic intervention. Virus-like particles (VLP) present the possibility to study the biochemical and biophysical properties of viral membrane proteins in their native environment. Specifically, the VLP constructs contain the entire protein sequence and are comprised of native membrane components including lipids, cholesterol, carbohydrates and cellular proteins. In this study we prepare VLP containing full-length hemagglutinin (HA) or neuraminidase (NA) from influenza and characterize their interactions with small molecule inhibitors. Using HA-VLP, we first show that VLP samples prepared using the standard sucrose gradient purification scheme contain significant amounts of serum proteins, which exhibit high potential for non-specific interactions, thereby complicating NMR studies of ligand-target interactions. We then show that the serum contaminants may be largely removed with the addition of a gel filtration chromatography step. Next, using HA-VLP we demonstrate that WaterLOGSY NMR is significantly more sensitive than Saturation Transfer Difference (STD) NMR for the study of ligand interactions with membrane bound targets. In addition, we compare the ligand orientation to HA embedded in VLP with that of recombinant HA by STD NMR. In a subsequent step, using NA-VLP we characterize the kinetic and binding properties of substrate analogs and inhibitors of NA, including study of the H274Y-NA mutant, which leads to wide spread resistance to current influenza antivirals. In summary, our work suggests that VLP have high potential to become standard tools in biochemical and biophysical studies of viral membrane proteins, particularly when VLP are highly purified and combined with control VLP containing native membrane proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas da Matriz Viral/química , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Cinética , Proteínas Mutantes , Neuraminidase/química , Neuraminidase/metabolismo , Ligação Proteica , Proteínas da Matriz Viral/metabolismo
6.
Arch Biochem Biophys ; 606: 81-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27457418

RESUMO

In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA.


Assuntos
Acetamidas/química , Piperidinas/química , Piridinas/química , Albumina Sérica/química , Úlcera Gástrica/sangue , Úlcera Gástrica/tratamento farmacológico , Sítios de Ligação , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Prótons , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Varfarina/química
7.
Methods Mol Biol ; 2797: 115-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570456

RESUMO

Fragment-based screening by ligand-observed 1D NMR and binding interface mapping by protein-observed 2D NMR are popular methods used in drug discovery. These methods allow researchers to detect compound binding over a wide range of affinities and offer a simultaneous assessment of solubility, purity, and chemical formula accuracy of the target compounds and the 15N-labeled protein when examined by 1D and 2D NMR, respectively. These methods can be applied for screening fragment binding to the active (GMPPNP-bound) and inactive (GDP-bound) states of oncogenic KRAS mutants.


Assuntos
Descoberta de Drogas , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Ligantes , Espectroscopia de Ressonância Magnética , Proteínas , Ligação Proteica , Sítios de Ligação
8.
Bioorg Med Chem Lett ; 23(18): 5114-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23932360

RESUMO

The HIV-1 envelope glycoprotein gp41 fusion intermediate is a promising drug target for inhibiting viral entry. However, drug development has been impeded by challenges inherent in mediating the underlying protein-protein interaction. Here we report on the identification of fragments that bind to a C-terminal sub-pocket adjacent to the well-known hydrophobic pocket on the NHR coiled coil. Using a specifically designed assay and ligand-based NMR screening of a fragment library, we identified a thioenylaminopyrazole compound with a dissociation constant of ~500 µM. Interaction with the C-terminal sub-pocket was confirmed by paramagnetic relaxation enhancement NMR experiments, which also yielded the binding mode. Shape-based similarity searching detected additional phenylpyrazole and phenyltriazole fragments within the library, enriching the hit rate over random screening, and revealing molecular features required for activity. Discovery of the novel scaffolds and binding mechanism suggests avenues for extending the interaction surface and improving the potency of a hydrophobic pocket binding inhibitor.


Assuntos
Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Pirazóis/farmacologia , Relação Dose-Resposta a Droga , Proteína gp41 do Envelope de HIV/química , Espectroscopia de Ressonância Magnética/normas , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Padrões de Referência , Relação Estrutura-Atividade
9.
Int J Biol Macromol ; 206: 911-916, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318080

RESUMO

Conventional approaches to study ligand-receptor interactions using solution-state NMR often involve laborious sample preparation, isotopic labeling, and receptor reconstitution. Each of these steps remains challenging for membrane proteins such as G protein-coupled receptors (GPCRs). Here we introduce a combinational approach integrating NMR and homogenized membrane nano-discs preparation to characterize the ligand-GPCR interactions. The approach will have a great potential for drug screening as it benefits from minimal receptor preparation, minimizing non-specific binding. In addition, the approach maintains receptor structural heterogeneity essential for functional diversity, making it feasible for probing a more reliable ligand-GPCR interaction that is vital for faithful ligand discovery.


Assuntos
Receptores Acoplados a Proteínas G , Avaliação Pré-Clínica de Medicamentos/métodos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
10.
ChemMedChem ; 16(9): 1420-1424, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33275320

RESUMO

Aberrant WNT pathway activation, leading to nuclear accumulation of ß-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of ß-catenin and subsequent nuclear translocation. Restoring cellular degradation of ß-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to ß-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging ß-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards ß-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.


Assuntos
Bibliotecas de Moléculas Pequenas/química , beta Catenina/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , beta Catenina/metabolismo
11.
J Mol Biol ; 432(7): 2080-2098, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32061932

RESUMO

The self-assembly of the 42-residue amyloid-ß peptide, Aß42, into fibrillar aggregates is associated with neuronal dysfunction and toxicity in Alzheimer's disease (AD) patient brains, suggesting that small molecules acting on this process might interfere with pathogenesis. Here, we present experimental evidence that the small molecule sclerotiorin (SCL), a natural product belonging to the group of azaphilones, potently delays both seeded and nonseeded Aß42 polymerization in cell-free assays. Mechanistic biochemical studies revealed that the inhibitory effect of SCL on fibrillogenesis is caused by its ability to kinetically stabilize small Aß42 oligomers. These structures exhibit low ß-sheet content and do not possess seeding activity, indicating that SCL acts very early in the amyloid formation cascade before the assembly of seeding-competent, ß-sheet-rich fibrillar aggregates. Investigations with NMR WaterLOGSY experiments confirmed the association of Aß42 assemblies with SCL in solution. Furthermore, using ion mobility-mass spectrometry, we observed that SCL directly interacts with a small fraction of Aß42 monomers in the gas phase. In comparison to typical amyloid fibrils, small SCL-stabilized Aß42 assemblies are inefficiently taken up into mammalian cells and have low toxicity in cell-based assays. Overall, these mechanistic studies support a pathological role of stable, ß-sheet-rich Aß42 fibrils in AD, while structures with low ß-sheet content may be less relevant.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/antagonistas & inibidores , Benzopiranos/farmacologia , Proliferação de Células , Neuroblastoma/tratamento farmacológico , Fragmentos de Peptídeos/química , Multimerização Proteica/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Células PC12 , Fragmentos de Peptídeos/metabolismo , Conformação Proteica em Folha beta , Ratos , Células Tumorais Cultivadas
12.
Bio Protoc ; 10(13): e3666, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659336

RESUMO

In drug development programmes, multiple assays are needed for the determination of protein-compound interactions and evaluation of potential use in assays with protein-protein interactions. In this protocol we describe the waterLOGSY NMR method for confirming protein-ligand binding events.

13.
Methods Enzymol ; 623: 131-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239044

RESUMO

A growing understanding of the structure and function of RNA has revealed it as a key regulator of gene expression and disease. A multitude of noncoding functions apart from the central roles of RNA in coding for and facilitating protein biogenesis has stimulated research into RNA as a pharmacological target. Despite many exciting advances, RNA remains an understudied target for small molecules, and techniques to investigate RNA-binding molecules are still emerging. A key stumbling block in this area has been validation of RNA-small molecule interactions. Our laboratory has recently used multiple ligand-observed NMR techniques in this regard, including CPMG and WaterLOGSY. This work describes methods to use these techniques in the context of studying RNA-ligand interactions.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , RNA/química , Bibliotecas de Moléculas Pequenas/química
14.
Methods Enzymol ; 615: 477-500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30638539

RESUMO

WaterLOGSY is a ligand-observed NMR method that is widely used for the studies of protein-small molecule interactions. The basis of waterLOGSY relies on the transfer of magnetization between water molecules, proteins, and small molecules via the nuclear Overhauser effect and chemical exchange. WaterLOGSY is used extensively for the screening of protein ligands, as it is a robust, relatively high-throughput, and reliable method to identify small molecules that bind proteins with a binding affinity (KD) in the µM to mM region. WaterLOGSY also enables the determination of KD via ligand titration, although careful optimization of the experimental setup is required to avoid overestimation of binding constants. Finally, waterLOGSY allows the water-accessible ligand protons of protein-bound ligands to be identified, thus providing structural information of the ligand binding orientation. In this chapter, we introduce and describe the waterLOGSY method, and provide a practical guide for ligand screening and KD determination. The use of waterLOGSY to study water accessibility is also discussed.


Assuntos
Ligantes , Espectroscopia de Ressonância Magnética/métodos , Proteínas/metabolismo , Humanos , Cinética , Ligação Proteica , Albumina Sérica Humana/metabolismo , Triptofano/metabolismo
15.
Eur J Med Chem ; 141: 169-177, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031064

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is attracting a great deal of interest as drug target in immune-oncology being highly expressed in cancer cells and participating to the tumor immune-editing process. Although several classes of IDO1 inhibitors have been reported in literature and patent applications, only few compounds have proved optimal pharmacological profile in preclinical studies to be advanced in clinical trials. Accordingly, the quest for novel structural classes of IDO1 inhibitors is still open. In this paper, we report a fragment-based screening campaign that combines Water-LOGSY NMR experiments and microscale thermophoresis approach to identify fragments that may be helpful for the development of novel IDO1 inhibitors as therapeutic agents in immune-oncology disorders.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Cinurenina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/síntese química , Cinurenina/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
16.
ChemMedChem ; 12(17): 1458-1463, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28722296

RESUMO

Over the years a significant amount of effort has been put into the development of rapid and reliable methods to monitor the aggregation dynamics of the ß1-42 amyloid peptide in real time. We present an alternative approach based on a suitable reporter or spy molecule and three different NMR experiments: WaterLOGSY, 1 H selective T1 filter, and 19 F T2 filter, for monitoring the initial self-aggregation process kinetics of the ß1-42 amyloid peptide and identifying molecules that retard or accelerate the self-aggregation process. Although the proposed method is not a high-throughput assay, it avoids problems associated with interference events that are sometimes observed in fluorescence-based assays.


Assuntos
Peptídeos beta-Amiloides/química , Ressonância Magnética Nuclear Biomolecular/métodos , Fragmentos de Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Cinética , Ligantes
17.
Eur J Pharm Biopharm ; 104: 189-99, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27163242

RESUMO

Innovative approaches in nanotechnology can provide drug delivery systems with a high potential in different fields. To avoid trial and error assays as a main driving force governing new designs and, furthermore, to develop successful nanosystem optimization strategies, it is of the greatest importance to develop specific characterisation techniques beyond conventional determinations of size, zeta potential and morphology. However, the application of techniques able to determine some key characteristics, such as nanostructure (i.e., solid structure vs vesicular), and the way in which the reorganization of components takes place on these structures has been scarcely explored. The present work has been devoted to provide some insights about the potential offered by some NMR techniques to those scientists working on nanotechnological approaches. For this purpose, we selected our nanosystems based on sorbitan monooleate as a case study. We used (1)H NMR methods, including a recently proposed method relying in the well-known Saturation Transfer Difference (STD) experiment for the observation of 'invisible signals' in large aggregates (Invisible State STD or ISSTD). Overall, these techniques revealed the presence in these nanosystems of a gradient of flexibility from an internal rigid core towards a more flexible region located on their surface, as well as the absence of water content in both regions. Such structure, corresponding to a solid nanostructure rather than a vesicular one, can explain some of the interesting properties previously observed for these innovative nanosystems, such as their high stability, and allows us to refer to these nanosystems with the term "Solid Sorbitan esters Nanoparticles" (SSN). On the basis of the valuable information provided by the mentioned characterisation techniques, it is our understanding that they could facilitate the future design of new drug delivery nanosystems as well as the improvement of existing ones and/or the development of new applications for classical drug delivery concepts.


Assuntos
Estrutura Molecular , Nanopartículas/química , Polissorbatos/química , Ésteres , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão
18.
J Phys Chem Lett ; 6(9): 1674-8, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26263332

RESUMO

The affinity between a chosen target protein and small molecules is a key aspect of drug discovery. Screening by popular NMR methods such as Water-LOGSY suffers from low sensitivity and from false positives caused by aggregated or denatured proteins. This work demonstrates that the sensitivity of Water-LOGSY can be greatly boosted by injecting hyperpolarized water into solutions of proteins and ligands. Ligand binding can be detected in a few seconds, whereas about 30 min is usually required without hyperpolarization. Hyperpolarized water also enhances proton signals of proteins at concentrations below 20 µM so that one can verify in a few seconds whether the proteins remain intact or have been denatured.


Assuntos
Proteínas/química , Ligantes , Ligação Proteica
19.
Curr Protoc Protein Sci ; 81: 17.18.1-17.18.24, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26237672

RESUMO

Nuclear magnetic resonance (NMR) is a powerful technique for the study and characterization of protein-ligand interactions. In this unit we review both experiments where the NMR spectrum of the protein is observed (protein-observed NMR experiments) and those where the NMR spectra of the ligand is observed (ligand-observed NMR experiments) for the identification of binding partners, the measurement of protein-ligand affinity, the design of molecules that are active against biological targets such as proteins, and the assessment of the binding modes of the ligands. Ligand-observed methods discussed in this unit are Nuclear Overhauser Effect (NOE)-based approaches, with well-known experiments such as the Saturation Transfer Difference, Water-Ligand Observed via Gradient Spectroscopy (WaterLOGSY), and transferred-Nuclear Overhauser Effect Spectroscopy (tr-NOESY) experiments, and also the INPHARMA experiment. Regarding protein-observed experiments, this unit focuses on the use of chemical shift perturbations observed in protein-NMR spectra upon ligand binding. Also discussed is how these chemical shift perturbations can be used for the analysis of protein-ligand complexes, including fast structure determination when combined with docking.


Assuntos
Ligantes , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas , Proteínas/química , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa