Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2303515120, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216501

RESUMO

Immiscible fluid-fluid displacement in confined geometries is a fundamental process occurring in many natural phenomena and technological applications, from geological CO2 sequestration to microfluidics. Due to the interactions between the fluids and the solid walls, fluid invasion undergoes a wetting transition from complete displacement at low displacement rates to leaving a film of the defending fluid on the confining surfaces at high displacement rates. While most real surfaces are rough, fundamental questions remain about the type of fluid-fluid displacement that can emerge in a confined, rough geometry. Here, we study immiscible displacement in a microfluidic device with a precisely controlled structured surface as an analogue for a rough fracture. We analyze the influence of the degree of surface roughness on the wetting transition and the formation of thin films of the defending liquid. We show experimentally, and rationalize theoretically, that roughness affects both the stability and dewetting dynamics of thin films, leading to distinct late-time morphologies of the undisplaced (trapped) fluid. Finally, we discuss the implications of our observations for geologic and technological applications.

2.
Proc Natl Acad Sci U S A ; 120(15): e2212516120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018196

RESUMO

Biomolecular phase separation has emerged as an essential mechanism for cellular organization. How cells respond to environmental stimuli in a robust and sensitive manner to build functional condensates at the proper time and location is only starting to be understood. Recently, lipid membranes have been recognized as an important regulatory center for biomolecular condensation. However, how the interplay between the phase behaviors of cellular membranes and surface biopolymers may contribute to the regulation of surface condensation remains to be elucidated. Using simulations and a mean-field theoretical model, we show that two key factors are the membrane's tendency to phase-separate and the surface polymer's ability to reorganize local membrane composition. Surface condensate forms with high sensitivity and selectivity in response to features of biopolymer when positive co-operativity is established between coupled growth of the condensate and local lipid domains. This effect relating the degree of membrane-surface polymer co-operativity and condensate property regulation is shown to be robust by different ways of tuning the co-operativity, such as varying membrane protein obstacle concentration, lipid composition, and the affinity between lipid and polymer. The general physical principle emerged from the current analysis may have implications in other biological processes and beyond.


Assuntos
Proteínas de Membrana , Polímeros , Membrana Celular , Membranas , Lipídeos
3.
Proc Natl Acad Sci U S A ; 117(41): 25407-25413, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33008880

RESUMO

After more than two decades of study, many fundamental questions remain unanswered about the dynamics of glass-forming materials confined to thin films. Experiments and simulations indicate that free interfaces enhance dynamics over length scales larger than molecular sizes, and this effect strengthens at lower temperatures. The nature of the influence of interfaces, however, remains a point of significant debate. In this work, we explore the properties of the nonequilibrium phase transition in dynamics that occurs in trajectory space between high- and low-mobility basins in a set of model polymer freestanding films. In thick films, the film-averaged mobility transition is broader than the bulk mobility transition, while in thin films it is a variant of the bulk result shifted toward a higher bias. Plotting this transition's local coexistence points against the distance from the films' surface shows thick films have surface and film-center transitions, while thin films practically have a single transition throughout the film. These observations are reminiscent of thermodynamic capillary condensation of a vapor-liquid phase between parallel plates, suggesting they constitute a demonstration of such an effect in a trajectory phase transition in the dynamics of a structural glass former. Moreover, this transition bears similarities to several experiments exhibiting anomalous behavior in the glass transition upon reducing film thickness below a material-dependent onset, including the broadening of the glass transition and the homogenization of surface and bulk glass transition temperatures.

4.
Small ; 18(14): e2107060, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187805

RESUMO

With narrow and dense nanoarchitectures increasingly adopted to improve optical functionality, achieving the complete wetting of photonic devices is required when aiming at underwater molecule detection over the water-repellent optical materials. Despite continuous advances in photonic applications, real-time monitoring of nanoscale wetting transitions across nanostructures with 10-nm gaps, the distance at which photonic performance is maximized, remains a chronic hurdle when attempting to quantify the water influx and molecules therein. For this reason, the present study develops a photonic switch that transforms the wetting transition into perceivable color changes using a liquid-permeable Fabry-Perot resonator. Electro-capillary-induced Cassie-to-Wenzel transitions produce an optical memory effect in the photonic switch, as confirmed by surface-energy analysis, simulations, and an experimental demonstration. The results show that controlling the wetting behavior using the proposed photonic switch is a promising strategy for the integration of aqueous media with photonic hotspots in plasmonic nanostructures such as biochemical sensors.


Assuntos
Nanoestruturas , Água , Ação Capilar , Nanoestruturas/química , Fótons , Água/química , Molhabilidade
5.
Proc Natl Acad Sci U S A ; 115(32): 8070-8075, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30026197

RESUMO

Understanding the fundamental wetting behavior of liquids on surfaces with pores or cavities provides insights into the wetting phenomena associated with rough or patterned surfaces, such as skin and fabrics, as well as the development of everyday products such as ointments and paints, and industrial applications such as enhanced oil recovery and pitting during chemical mechanical polishing. We have studied, both experimentally and theoretically, the dynamics of the transitions from the unfilled/partially filled (Cassie-Baxter) wetting state to the fully filled (Wenzel) wetting state on intrinsically hydrophilic surfaces (intrinsic water contact angle <90°, where the Wenzel state is always the thermodynamically favorable state, while a temporary metastable Cassie-Baxter state can also exist) to determine the variables that control the rates of such transitions. We prepared silicon wafers with cylindrical cavities of different geometries and immersed them in bulk water. With bright-field and confocal fluorescence microscopy, we observed the details of, and the rates associated with, water penetration into the cavities from the bulk. We find that unconnected, reentrant cavities (i.e., cavities that open up below the surface) have the slowest cavity-filling rates, while connected or non-reentrant cavities undergo very rapid transitions. Using these unconnected, reentrant cavities, we identified the variables that affect cavity-filling rates: (i) the intrinsic contact angle, (ii) the concentration of dissolved air in the bulk water phase (i.e., aeration), (iii) the liquid volatility that determines the rate of capillary condensation inside the cavities, and (iv) the presence of surfactants.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Termodinâmica , Molhabilidade , Ar , Fluoresceína/química , Menisco/química , Transição de Fase , Pressão , Silício/química , Solubilidade , Propriedades de Superfície , Tensoativos/química , Volatilização , Água/química
6.
Proc Natl Acad Sci U S A ; 114(42): E8830-E8836, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973914

RESUMO

Cytochrome c oxidase (CcO) is a transmembrane protein that uses the free energy of O2 reduction to generate the proton concentration gradient across the membrane. The regulation of competitive proton transfer pathways has been established to be essential to the vectorial transport efficiency of CcO, yet the underlying mechanism at the molecular level remains lacking. Recent studies have highlighted the potential importance of hydration-level change in an internal cavity that connects the proton entrance channel, the site of O2 reduction, and the putative proton exit route. In this work, we use atomistic molecular dynamics simulations to investigate the energetics and timescales associated with the volume fluctuation and hydration-level change in this central cavity. Extensive unrestrained molecular dynamics simulations (accumulatively [Formula: see text]4 [Formula: see text]s) and free energy computations for different chemical states of CcO support a model in which the volume and hydration level of the cavity are regulated by the protonation state of a propionate group of heme a3 and, to a lesser degree, the redox state of heme a and protonation state of Glu286. Markov-state model analysis of [Formula: see text]2-[Formula: see text]s trajectories suggests that hydration-level change occurs on the timescale of 100-200 ns before the proton-loading site is protonated. The computed energetic and kinetic features for the cavity wetting transition suggest that reversible hydration-level change of the cavity can indeed be a key factor that regulates the branching of proton transfer events and therefore contributes to the vectorial efficiency of proton transport.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Modelos Moleculares , Ácido Glutâmico/química , Heme/análogos & derivados , Heme/química , Simulação de Dinâmica Molecular , Oxirredução , Propionatos/química , Prótons , Rhodobacter sphaeroides/enzimologia , Eletricidade Estática , Termodinâmica , Água/química
7.
Proc Natl Acad Sci U S A ; 113(47): 13307-13312, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27834217

RESUMO

Inspired by manifestations in nature, microengineering and nanoengineering of synthetic materials to achieve superhydrophobicity has been the focus of much work. Generally, hydrophobicity is enhanced through the combined effects of surface texturing and chemistry; being durable, rigid materials are the norm. However, many natural and technical surfaces are flexible, and the resulting effect on hydrophobicity has been largely ignored. Here, we show that the rational tuning of flexibility can work synergistically with the surface microtexture or nanotexture to enhance liquid repellency performance, characterized by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate areal density and stiffness imparts immediate acceleration and intrinsic responsiveness to impacting droplets (∼350 × g), mitigating the collision and lowering the impalement probability by ∼60% without the need for active actuation. Furthermore, we exemplify the above discoveries with materials ranging from man-made (thin steel or polymer sheets) to nature-made (butterfly wings).

8.
Proc Natl Acad Sci U S A ; 113(44): E6741-E6748, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791107

RESUMO

Since the pioneering prediction of surface melting by Michael Faraday, it has been widely accepted that thin water layers, called quasi-liquid layers (QLLs), homogeneously and completely wet ice surfaces. Contrary to this conventional wisdom, here we both theoretically and experimentally demonstrate that QLLs have more than two wetting states and that there is a first-order wetting transition between them. Furthermore, we find that QLLs are born not only under supersaturated conditions, as recently reported, but also at undersaturation, but QLLs are absent at equilibrium. This means that QLLs are a metastable transient state formed through vapor growth and sublimation of ice, casting a serious doubt on the conventional understanding presupposing the spontaneous formation of QLLs in ice-vapor equilibrium. We propose a simple but general physical model that consistently explains these aspects of surface melting and QLLs. Our model shows that a unique interfacial potential solely controls both the wetting and thermodynamic behavior of QLLs.

9.
Molecules ; 23(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241288

RESUMO

Molecular dynamics (MD) simulation has been employed to study the wetting transitions of liquid gallium droplet on the graphene surfaces, which are decorated with three types of carbon nanopillars, and to explore the effect of the surface roughness and morphology on the wettability of liquid Ga. The simulation results showed that, at the beginning, the Ga film looks like an upside-down dish on the rough surface, different from that on the smooth graphene surface, and its size is crucial to the final state of liquid. Ga droplets exhibit a Cassie⁻Baxter (CB) state, a Wenzel state, a Mixed Wetting state, and a dewetting state on the patterned surfaces by changing distribution and the morphology of nanopillars. Top morphology of nanopillars has a direct impact on the wetting transition of liquid Ga. There are three transition states for the two types of carbon nanotube (CNT) substrates and two for the carbon nanocone (CNC) one. Furthermore, we have found that the substrates show high or low adhesion to the Ga droplet with the variation of their roughness and top morphology. With the roughness decreasing, the adhesion energy of the substrate decreases. With the same roughness, the CNC/graphene surface has the lowest adhesion energy, followed by CNT/graphene and capped CNT/graphene surfaces. Our findings provide not only valid support to previous works but also reveal new theories on the wetting model of the metal droplet on the rough substrates.


Assuntos
Gálio/química , Grafite/química , Nanotubos de Carbono/química , Molhabilidade/efeitos dos fármacos , Simulação de Dinâmica Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28815888

RESUMO

Reliable characterization of wetting properties is essential for the development and optimization of superhydrophobic surfaces. Here, the dynamics of superhydrophobicity is studied including droplet friction and wetting transitions by using droplet oscillations on micropillared surfaces. Analyzing droplet oscillations by high-speed camera makes it possible to obtain energy dissipation parameters such as contact angle hysteresis force and viscous damping coefficients, which indicate pinning and viscous losses, respectively. It is shown that the dissipative forces increase with increasing solid fraction and magnetic force. For 10 µm diameter pillars, the solid fraction range within which droplet oscillations are possible is between 0.97% and 2.18%. Beyond the upper limit, the oscillations become heavily damped due to high friction force. Below the lower limit, the droplet is no longer supported by the pillar tops and undergoes a Cassie-Wenzel transition. This transition is found to occur at lower pressure for a moving droplet than for a static droplet. The findings can help to optimize micropillared surfaces for low-friction droplet transport.

11.
J Colloid Interface Sci ; 674: 178-185, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38925063

RESUMO

HYPOTHESIS: The petal effect is a well-known natural phenomenon in surface science and has served as inspiration for the creation of several materials with superhydrophobic qualities and high adhesion. As surface roughness has a crucial role in these properties, being able to modulate it could help us design materials at will. Capillary penetration frustrates diffusion and promotes large contact angles as well as high adhesion. EXPERIMENTS: Polystyrene surfaces were created using the spin-coating technique. By varying the polymer concentration, the surface roughness was modified. To determine the roughness parameters, atomic force microscopy was used. We recorded advancing and receding contact angles using water and glycerol as test liquids to study contact angle hysteresis, the work of adhesion and the apparent surface energy, which was determined with the Chibowski and Perea-Carpio method. For the purpose of elucidating the wetting states, captive bubble experiments were conducted. FINDINGS: Using an easy method, we create polystyrene surfaces with both superhydrophobicity and strong adhesion, where the roughness area factor regulates wetting transitions from Cassie-Baxter to Wenzel. The receding contact angle suggests capillary penetration, which we demonstrate by captive bubble experiments. In addition, a link was found between the surface roughness and apparent surface energy.

12.
Talanta ; 258: 124417, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931060

RESUMO

Recent progress in wettability-patterned microchips has facilitated the development of ultra-trace detection in multiple biomedical and food safety fields. The existence of a superhydrophilic trap can realize targeted deposition of the analyte. However, the wetting transition from the Cassie-Baxter state to the Wenzel state usually occurs during evaporation and leads to a larger deposition footprint, which has a strong impact on the detection sensitivity and uniformity. In this paper, we report an integrated design, fabrication, and evaporation strategy to avoid the transition for high-performance attomolar surface-enhanced Raman scattering (SERS) detection. An improved force balance model was proposed to design the microstructures of wettability-patterned microchips, which were fabricated by nanosecond laser direct writing and surface fluorination. The microchips were composed of superhydrophobic micro-grooves and superhydrophilic traps, by which the targeted deposition of Au nanoparticles and rhodamine 6G (R6G) onto a minimal area of ∼70 × 70 µm2 was realized after a two-step heated evaporation. Accordingly, the detection limit was down to the attomolar level (5 × 10-18 M) with SERS enhancement factors (EFs) exceeding 1010. More importantly, the Raman signals showed good uniformity (RSD of 11.5%) for the concentration of 2 × 10-17 M. A good linear relationship was obtained in the quantitative concentration range of 10-12 M to 5 × 10-18 M with a high correlation coefficient (R2) of 0.996. These wettability-patterned microchips exhibit high performance (that is, both good sensitivity and good uniformity) in the detection of ultra-trace molecules in aqueous solutions, avoiding the need for expensive equipment and considerable skill in operations. The proposed strategy could also be applied to other microfluidic devices for rapid and simple analyte pre-concentration.

13.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014751

RESUMO

Stabilizing the hydrophobic wetting state on a surface is essential in heat transfer and microfluidics. However, most hydrophobic surfaces of Si are primarily achieved through microtexturing with subsequent coating or modification of low surface energy materials. The coatings make the hydrophobic surface unstable and impractical in many industrial applications. In this work, the Si chips' wettability transitions are yielded from the original hydrophilic state to a stable transitional hydrophobic state by texturing bamboo-leaf-like hierarchical structures (BLHSs) through a diamond grinding wheel with one-step forming. Experiments showed that the contact angles (CAs) on the BLHS surfaces increased to 97° and only reduced by 2% after droplet impacts. This is unmatched by the current texturing surface without modification. Moreover, the droplets can be split up and transferred by the BLHS surfaces with their 100% mass. When the BLHS surfaces are modified by the low surface energy materials' coating, the hydrophobic BLHS surfaces are upgraded to be superhydrophobic (CA > 135°). More interestingly, the droplet can be completely self-sucked into a hollow micro-tube within 0.1 s without applying external forces. A new wetting model for BLHS surfaces based on the fractal theory is determined by comparing simulated values with the measured static contact angle of the droplets. The successful preparation of the bamboo-leaf-like Si confirmed that transitional wettability surfaces could be achieved by the micromachining of grinding on the hard and brittle materials. Additionally, this may expand the application potential of the key semiconductor material of Si.

14.
Materials (Basel) ; 15(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888211

RESUMO

Superhydrophobic surfaces have been widely employed in both fundamental research and industrial applications because of their self-cleaning, waterproof, and low-adhesion qualities. Maintaining the stability of the superhydrophobic state and avoiding water infiltration into the microstructure are the basis for realizing these characteristics, while the size, shape, and distribution of the heterogeneous microstructures affect both the static contact angle and the wetting transition mechanism. Here, we review various classical models of wettability, as well as the advanced models for the corrected static contact angle for heterogeneous surfaces, including the general roughness description, fractal theory description, re-entrant geometry description, and contact line description. Subsequently, we emphasize various wetting transition mechanisms on heterogeneous surfaces. The advanced testing strategies to investigate the wetting transition behavior will also be analyzed. In the end, future research priorities on the wetting transition mechanisms of heterogeneous surfaces are highlighted.

15.
ACS Appl Mater Interfaces ; 13(46): 55726-55734, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761672

RESUMO

Surfaces with nanostructure patterning are broadly encountered in nature, and they play a significant role in regulating various phenomena such as phase transition at the liquid/solid interface. Here, we designed two kinds of template substrates with periodic nanostructure patterns [i.e., nanotrench (NT) and nanopore (NP)]. Surface nanodroplets produced on these nanostructure surfaces were characterized to acquire their morphology and wetting properties. We show that nanostructure patterning could effectively regulate the shape, contact radius, and nucleate site of nanodroplets. While nanodroplets on the NT structure are constrained in one dimension, nanodroplets on the NP structure have enhanced the wetting property with constraints from two dimensions. Further numerical analysis indicates that the morphology and contact angles of nanodroplets on the NT structure depend on the substrate wettability and the droplet volume. These observations demonstrate how physical geometry and chemical heterogeneity of a substrate surface affect the growth and spreading of surface nanodroplets, which deepens our understanding on nanoscale phase separation.

16.
J Colloid Interface Sci ; 587: 311-323, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33373793

RESUMO

HYPOTHESIS: Molecular dynamics (MD) may be used to investigate the velocity dependence of both the microscopic and apparent dynamic contact angles (θm and θapp). METHODS: We use large-scale MD to explore the steady displacement of a water-like liquid bridge between two molecularly-smooth solid plates under the influence of an external force F0. A coarse-grained model of water reduces the computational demand and the solid-liquid affinity is varied to adjust the equilibrium contact angle θ0. Protocols are devised to measure θm and θapp as a function of contact-line velocity Ucl. FINDINGS: For all θ0, θm is velocity-dependent and consistent with the molecular-kinetic theory of dynamic wetting (MKT). However, θapp diverges from θm as F0 is increased, especially at the receding meniscus. The behavior of θapp follows that predicted by Voinov: (θapp)3 = (θm)3 + 9Ca·ln(L/Lm), where Ca is the capillary number and L and Lm are suitably-chosen macroscopic and microscopic length scales. For each θ0, there is a critical velocity Ucrit and contact angle θcrit at which θapp→0 and the receding meniscus deposits a liquid film. Setting θapp=0, θm=θcrit and Ucl=Ucrit in the Voinov equation yields the value of L/Lm. The predicted values of θapp then agree well with those measured from the simulations. Since θm obeys the MKT, we have, therefore, demonstrated the utility of the combined model of dynamic wetting proposed by Petrov and Petrov.

17.
ACS Appl Mater Interfaces ; 12(35): 39881-39891, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805947

RESUMO

We report the surface-energy-dependent wetting transition characteristics of an evaporating water droplet on surface-energy-controlled microcavity structures with functional nanocoatings. The droplet wetting scenarios were categorized into four types depending on the synergistic effect of surface energy and pattern size. The silicon (Si) microcavity surfaces (γSi = 69.8 mJ/m2) and the polytetrafluoroethylene (PTFE)-coated microcavity surfaces (γPTFE = 15.0 mJ/m2) displayed stable Wenzel and Cassie wetting states, respectively, irrespective of time. In contrast, diamond-like carbon (DLC)-coated (γDLC = 55.5 mJ/m2) and fluorinated diamond-like carbon (FDLC)-coated (γFDLC = 36.2 mJ/m2) surfaces demonstrated a time-dependent transition of wetting states. In particular, the DLC-coated surface showed random filling of microcavities at the earlier time point, while the FDLC-coated surface displayed directional filling of microcavities at the late stage of drop evaporation. Such dynamic wetting scenarios based on surface energy, in particular, the random and directional wetting transitions related to surface energy of nanocoatings have not been explored previously. Furthermore, the microscopic role of nanocoating in the wetting scenarios was analyzed by monitoring the time-dependent deformation and movement of the air-water interface (AWI) at individual cavities using the fluorescence interference-contrast (FLIC) technique. A coating-dependent depinning mechanism of the AWI was responsible for variable filling of cavities leading to time-dependent wetting scenarios. A capillary wetting model was used to relate this depinning event to the evaporation-induced internal flow within the droplet. Interestingly, FLIC analysis revealed that a hydrophilic nanocoating can induce microscopic hydrophobicity near the cavity edges leading to delayed and variable cavity filling. The surface energy-dependent classification of the wetting scenarios may help the design of novel evaporation-assisted thermodynamic and mass-transfer processes.

18.
ACS Appl Mater Interfaces ; 10(14): 11425-11429, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29582984

RESUMO

Producing and maintaining specific liquid patterns during evaporation holds great potential for techniques of printing and coating. Here we report the control over the evolution of surfactant solution droplets on the micropyramid substrates during evaporation. The polygonal droplet shape is achieved during the drying rather than solely at the beginning. As the initial surfactant concentration is 0.04 mM, the droplet maintains its initial octagonal shape throughout the lifetime. Interestingly, the initial octagonal shape transforms into a square during the evaporation as the initial surfactant concentration reaches 0.8 mM. These findings can shed light on wetting pattern control for complex solutions required in various applications.

19.
ACS Appl Mater Interfaces ; 10(22): 19182-19188, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29767948

RESUMO

Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

20.
Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28485512

RESUMO

Superomniphobic surfaces are extremely repellent to virtually all liquids. By combining superomniphobicity and shape memory effect, metamorphic superomniphobic (MorphS) surfaces that transform their morphology in response to heat are developed. Utilizing the MorphS surfaces, the distinctly different wetting transitions of liquids with different surface tensions are demonstrated and the underlying physics is elucidated. Both ex situ and in situ wetting transitions on the MorphS surfaces are solely due to transformations in morphology of the surface texture. It is envisioned that the robust MorphS surfaces with reversible wetting transition will have a wide range of applications including rewritable liquid patterns, controlled drug release systems, lab-on-a-chip devices, and biosensors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa