Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2304112120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607236

RESUMO

Wnt signaling plays an essential role in developmental and regenerative myelination in the central nervous system. The Wnt signaling pathway is composed of multiple regulatory layers; thus, how these processes are coordinated to orchestrate oligodendrocyte (OL) development remains unclear. Here, we show CK2α, a Wnt/ß-catenin signaling Ser/Thr kinase, phosphorylates Daam2, inhibiting its function and Wnt activity during OL development. Intriguingly, we found Daam2 phosphorylation differentially impacts distinct stages of OL development, accelerating early differentiation followed by decelerating maturation and myelination. Application toward white matter injury revealed CK2α-mediated Daam2 phosphorylation plays a protective role for developmental and behavioral recovery after neonatal hypoxia, while promoting myelin repair following adult demyelination. Together, our findings identify a unique regulatory node in the Wnt pathway that regulates OL development via protein phosphorylation-induced signaling complex instability and highlights a new biological mechanism for myelin restoration.


Assuntos
Substância Branca , Fosforilação , Bainha de Mielina , Via de Sinalização Wnt
2.
J Neurosci ; 43(44): 7351-7360, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37684030

RESUMO

Bilateral common carotid artery (CCA) stenosis (BCAS) is a useful model to mimic vascular cognitive impairment and dementia (VCID). However, current BCAS models have the disadvantages of high cost and incompatibility with magnetic resonance imaging (MRI) scanning because of metal implantation. We have established a new low-cost VCID model that better mimics human VCID and is compatible with live-animal MRI. The right and the left CCAs were temporarily ligated to 32- and 34-gauge needles with three ligations, respectively. After needle removal, CCA blood flow, cerebral blood flow, white matter injury (WMI) and cognitive function were measured. In male mice, needle removal led to ∼49.8% and ∼28.2% blood flow recovery in the right and left CCA, respectively. This model caused persistent and long-term cerebral hypoperfusion in both hemispheres (more severe in the left hemisphere), and WMI and cognitive dysfunction in ∼90% of mice, which is more reliable compared with other models. Importantly, these pathologic changes and cognitive impairments lasted for up to 24 weeks after surgery. The survival rate over 24 weeks was 81.6%. Female mice showed similar cognitive dysfunction, but a higher survival rate (91.6%) and relatively milder white matter injury. A novel, low-cost VCID model compatible with live-animal MRI with long-term outcomes was established.SIGNIFICANCE STATEMENT Bilateral common carotid artery (CCA) stenosis (BCAS) is an animal model mimicking carotid artery stenosis to study vascular cognitive impairment and dementia (VCID). However, current BCAS models have the disadvantages of high cost and incompatibility with magnetic resonance imaging (MRI) scanning due to metal implantation. We established a new asymmetric BCAS model by ligating the CCA to various needle gauges followed by an immediate needle removal. Needle removal led to moderate stenosis in the right CCA and severe stenosis in the left CCA. This needle model replicates the hallmarks of VCID well in ∼90% of mice, which is more reliable compared with other models, has ultra-low cost, and is compatible with MRI scanning in live animals. It will provide a new valuable tool and offer new insights for VCID research.


Assuntos
Disfunção Cognitiva , Demência Vascular , Masculino , Camundongos , Feminino , Humanos , Animais , Constrição Patológica/complicações , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Demência Vascular/diagnóstico por imagem , Demência Vascular/etiologia , Demência Vascular/patologia , Cognição , Camundongos Endogâmicos C57BL
3.
J Neurochem ; 168(2): 142-160, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169121

RESUMO

White matter injury (WMI) is one of the most serious complications associated with preterm births. Damage to oligodendrocytes, which are the key cells involved in WMI pathogenesis, can directly lead to myelin abnormalities. L-ascorbyl-2-phosphate (AS-2P) is a stable form of vitamin C. This study aimed to explore the protective effects of AS-2P against chronic hypoxia-induced WMI, and elucidate the underlying mechanisms. An in vivo chronic hypoxia model and in vitro oxygen-glucose deprivation (OGD) model were established to explore the effects of AS-2P on WMI using immunofluorescence, immunohistochemistry, western blotting, real-time quantitative polymerase chain reaction, Morris water maze test, novel object recognition test, beaming-walking test, electron microscopy, and flow cytometry. The results showed that AS-2P resulted in the increased expression of MBP, Olig2, PDGFRα and CC1, improved thickness and density of the myelin sheath, and reduced TNF-α expression and microglial cell infiltration to alleviate inflammation in the brain after chronic hypoxia. Moreover, AS-2P improved the memory, learning and motor abilities of the mice with WMI. These protective effects of AS-2P may involve the upregulation of protein arginine methyltransferase 5 (PRMT5) and downregulation of P53 and NF-κB. In conclusion, our study demonstrated that AS-2P attenuated chronic hypoxia-induced WMI in vivo and OGD-induced oligodendrocyte injury in vitro possibly by regulating the PRMT5/P53/NF-κB pathway, suggesting that AS-2P may be a potential therapeutic option for WMI.


Assuntos
Lesões Encefálicas , Substância Branca , Animais , Camundongos , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais Recém-Nascidos , Substância Branca/patologia , Hipóxia/metabolismo , Lesões Encefálicas/patologia , Ácido Ascórbico/metabolismo , Oxigênio/metabolismo
4.
Biochem Biophys Res Commun ; 735: 150451, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094233

RESUMO

Cerebral small vascular disease (CSVD) has a high incidence worldwide, but its pathological mechanisms remain poorly understood due to the lack of proper animal models. The current animal models of CSVD have several limitations such as high mortality rates and large-sized lesions, and thus it is urgent to develop new animal models of CSVD. Ultrasound can activate protoporphyrin to produce reactive oxygen species in a liquid environment. Here we delivered protoporphyrin into cerebral small vessels of rat brain through polystyrene microspheres with a diameter of 15 µm, and then performed transcranial ultrasound stimulation (TUS) on the model rats. We found that TUS did not affect the large vessels or cause large infarctions in the brain of model rats. The mortality rates were also comparable between the sham and model rats. Strikingly, TUS induced several CSVD-like phenotypes such as cerebral microinfarction, white matter injuries and impaired integrity of endothelial cells in the model rats. Additionally, these effects could be alleviated by antioxidant treatment with N-acetylcysteine (NAC). As control experiments, TUS did not lead to cerebral microinfarction in the rat brain when injected with the polystyrene microspheres not conjugated with protoporphyrin. In sum, we generated a rat model of CSVD that may be useful for the mechanistic study and drug development for CSVD.

5.
J Neuroinflammation ; 21(1): 171, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010082

RESUMO

White matter injury (WMI) is thought to be a major contributor to long-term cognitive dysfunctions after traumatic brain injury (TBI). This damage occurs partly due to apoptotic death of oligodendrocyte lineage cells (OLCs) after the injury, triggered directly by the trauma or in response to degenerating axons. Recent research suggests that the gut microbiota modulates the inflammatory response through the regulation of peripheral immune cell infiltration after TBI. Additionally, T-cells directly impact OLCs differentiation and proliferation. Therefore, we hypothesized that the gut microbiota plays a critical role in regulating the OLC response to WMI influencing T-cells differentiation and activation. Gut microbial depletion early after TBI chronically reduced re-myelination, acutely decreased OLCs proliferation, and was associated with increased myelin debris accumulation. Surprisingly, the absence of T-cells in gut microbiota depleted mice restored OLC proliferation and remyelination after TBI. OLCs co-cultured with T-cells derived from gut microbiota depleted mice resulted in impaired proliferation and increased expression of MHC-II compared with T cells from control-injured mice. Furthermore, MHC-II expression in OLCs appears to be linked to impaired proliferation under gut microbiota depletion and TBI conditions. Collectively our data indicates that depletion of the gut microbiota after TBI impaired remyelination, reduced OLCs proliferation with concomitantly increased OLC MHCII expression, and required the presence of T cells. This data suggests that T cells are an important mechanistic link by which the gut microbiota modulate the oligodendrocyte response and white matter recovery after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oligodendroglia , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/microbiologia , Oligodendroglia/patologia , Microbioma Gastrointestinal/fisiologia , Camundongos , Proliferação de Células/fisiologia , Masculino , Linfócitos T/imunologia , Células Cultivadas
6.
J Neuroinflammation ; 21(1): 148, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840180

RESUMO

BACKGROUND: White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS: TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS: Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS: This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.


Assuntos
Antígenos CD36 , Camundongos Endogâmicos C57BL , Microglia , Animais , Microglia/metabolismo , Microglia/patologia , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Camundongos Knockout , Substância Branca/patologia , Substância Branca/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Polaridade Celular/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Transdução de Sinais/fisiologia
7.
J Bioenerg Biomembr ; 56(1): 1-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994971

RESUMO

White matter injury (WMI) resulting from intracerebral hemorrhage (ICH) is closely associated with adverse prognoses in ICH patients. Although Circ-AGTPBP1 has been reported to exhibit high expression in the serum of premature infants with WMI, its effects and mechanisms in ICH-induced WMI remain unclear. This study aimed to investigate the role of circ-AGTPBP1 in white matter injury after intracerebral hemorrhage. An intracerebral hemorrhage rat model was established by injecting autologous blood into rat left ventricles and circ-AGTPBP1 was knocked down at the ICH site using recombinant adeno-associated virus, AAV2/9. Magnetic resonance imaging (MRI) and gait analysis were conducted to assess long-term neurobehavioral effects. Primary oligodendrocyte progenitor cells (OPCs) were isolated from rats and overexpressed with circ-AGTPBP1. Downstream targets of circ-AGTPBP1 in OPCs were investigated using CircInteractome, qPCR, FISH analysis, and miRDB network. Luciferase gene assay was utilized to explore the relationship between miR-140-3p and Pcdh17 in OPCs and HEK-293T cells. Finally, CCK-8 assay, EdU staining, and flow cytometry were employed to evaluate the effects of mi-RNA-140-3p inhibitor or silencing of sh-pcd17 on the viability, proliferation, and apoptosis of OPCs. Low expression of circ-AGTPBP1 alleviates white matter injury and improves neurological functions in rats after intracerebral hemorrhage. Conversely, overexpression of circ-AGTPBP1 reduces the proliferative and migrative potential of oligodendrocyte progenitor cells and promotes apoptosis. CircInteractome web tool and qPCR confirmed that circ-AGTPBP1 binds with miR-140-3p in OPCs. Additionally, miRDB network predicted Pcdh17 as a downstream target of miR-140-3p. Moreover, pcdh17 expression was increased in the brain tissue of rats with intracerebral-induced white matter injury. Furthermore, inhibiting miR-140-3p suppressed the proliferation and migration of OPCs and facilitated apoptosis through Pcdh17. Circ-AGTPBP1 promotes white matter injury through modulating the miR-140-3p/Pcdh17 axis. The study provides a new direction for developing therapeutic strategies for white matter injury.


Assuntos
MicroRNAs , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Substância Branca , Humanos , Animais , Ratos , Apoptose , Hemorragia Cerebral , Células HEK293 , Proliferação de Células , Proteínas de Ligação ao GTP
8.
J Pediatr ; 272: 114090, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754774

RESUMO

OBJECTIVE: To evaluate whether white matter injury (WMI) volumes and spatial distribution, which are important predictors of neurodevelopmental outcomes in preterm infants, have changed over a period of 15 years. STUDY DESIGN: Five hundred and twenty-eight infants born <32 weeks' gestational age from 2 sequential prospective cohorts (cohort 1: 2006 through 2012; cohort 2: 2014 through 2019) underwent early-life (median 32.7 weeks postmenstrual age) and/or term-equivalent-age MRI (median 40.7 weeks postmenstrual age). WMI were manually segmented for quantification of volumes. There were 152 infants with WMI with 74 infants in cohort 1 and 78 in cohort 2. Multivariable linear regression models examined change in WMI volume across cohorts while adjusting for clinical confounders. Lesion maps assessed change in WMI location across cohorts. RESULTS: There was a decrease in WMI volume in cohort 2 compared with cohort 1 (ß = -0.6, 95% CI [-0.8, -0.3], P < .001) with a shift from more central to posterior location of WMI. There was a decrease in clinical illness severity of infants across cohorts. CONCLUSIONS: We found a decrease in WMI volume and shift to more posterior location in very preterm infants over a period of 15 years. This may potentially reflect more advanced maturation of white matter at the time of injury which may be related to changes in clinical practice over time.

9.
FASEB J ; 37(8): e23082, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462506

RESUMO

Brain white matter injury (WMI) is a serious disease of the central nervous system. Pleiotrophin (PTN) promotes the differentiation and myelination of oligodendrocytes (OLs) in vitro. However, the role of PTN in WMI remains unknown. Therefore, this study aimed to investigate the neuroprotective role and potential mechanisms of PTN function in neonatal rats with WMI. The PTN and mammalian target of rapamycin (mTOR) inhibitor everolimus was used to treat a WMI model in postnatal day 3 Sprague-Dawley rats, in which the right common carotid arteries of these rats were isolated, ligated, and exposed to a hypoxic environment (6% O2 + 94% N2 ) for 2 h. OL differentiation and myelination, as well as the spatial learning and memory abilities of the rats were evaluated to examine the effects of PTN. Two proteins of the mTOR signaling pathway, YingYang1 (YY1) and inhibitor of DNA binding 4 (Id4), were detected and were used to explore the potential mechanisms of PTN in rat WMI experiment and oxygen glucose deprivation (OGD) model. We found that the differentiation and myelination of OLs were impaired after WMI. PTN administration rescued this injury by activating mTOR/YY1 and inhibiting Id4. Everolimus administration inhibited mTOR/YY1 and activated Id4, which blocked the neuroprotective role of PTN in WMI. PTN plays a neuroprotective role in neonatal rats with WMI, which could be involved in the mTOR/YY1/Id4 signaling pathway.


Assuntos
Lesões Encefálicas , Substância Branca , Animais , Ratos , Animais Recém-Nascidos , Substância Branca/metabolismo , Ratos Sprague-Dawley , Everolimo/farmacologia , Everolimo/metabolismo , Transdução de Sinais , Lesões Encefálicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
10.
Brain ; 146(4): 1453-1466, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36087304

RESUMO

Cystic white matter injury is highly associated with severe neurodevelopmental disability and cerebral palsy in preterm infants, yet its pathogenesis remains poorly understood and there is no established treatment. In the present study, we tested the hypothesis that slowly evolving cystic white matter injury after hypoxia-ischaemia is mediated by programmed necrosis initiated by tumour necrosis factor. Tumour necrosis factor blockade was begun 3 days after hypoxia-ischaemia to target the tertiary phase of injury, when most secondary cell death is thought to be complete. Chronically instrumented preterm foetal sheep (0.7 gestation) received 25 min of hypoxia-ischaemia induced by complete umbilical cord occlusion or sham-umbilical cord occlusion (controls, n = 10), followed by intracerebroventricular infusion of the soluble TNF inhibitor, Etanercept, at 3, 8 and 13 days after umbilical cord occlusion (n = 9) or vehicle (n = 9). Foetal brains were processed for histology at 21 days after umbilical cord occlusion. Umbilical cord occlusion with vehicle was associated with a spectrum of macroscopic white matter degeneration, including white matter atrophy, ventriculomegaly and overt temporal lobe cystic white matter injury. Oligodendrocyte maturational arrest and impaired labelling of myelin proteins, characteristic of diffuse white matter injury, was observed in the parietal lobe and surrounding the cystic lesions in the temporal lobe. Etanercept markedly attenuated cystic white matter injury on the side of the intracerebroventricular infusion, with partial contralateral protection. Further, Etanercept improved oligodendrocyte maturation and labelling of myelin proteins in the temporal and parietal lobes. The present study shows that cystic white matter injury reflects late-onset tertiary cell death mediated by delayed neuroinflammation through the tumour necrosis factor pathway. Delayed tumour necrosis factor blockade markedly attenuated cystic white matter injury and restored oligodendrocyte maturation and deficits in myelin protein expression. These data suggest that delayed tumour necrosis factor blockade may represent a viable therapeutic strategy to reduce the risk of cystic and diffuse white matter injury and potentially cerebral palsy after preterm birth, with a surprisingly wide therapeutic window.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Hipóxia-Isquemia Encefálica , Nascimento Prematuro , Substância Branca , Recém-Nascido , Humanos , Feminino , Ovinos , Animais , Substância Branca/patologia , Asfixia/complicações , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Etanercepte/metabolismo , Recém-Nascido Prematuro , Hipóxia-Isquemia Encefálica/patologia , Lesões Encefálicas/patologia , Fatores de Necrose Tumoral/metabolismo
11.
Neuroradiology ; 66(1): 145-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870588

RESUMO

PURPOSE: Very preterm birth increases risk for neonatal white matter injury, but there is limited data on to what extent this persists into adolescence and how this relates to ophthalmological outcomes. The aim of this study was to assess brain MRI findings in 12-year-old children born very preterm compared to controls and their association with concurrent ophthalmological outcomes. METHODS: We included 47 children born very preterm and 22 full-term controls (gestational age <32 and >37 weeks, respectively). Brain MRI findings were studied in association with concurrent ophthalmological outcomes at 12-year follow-up. RESULTS: Evans index (0.27 vs 0.25, p<0.001) and a proposed "posterior ventricle index" (0.47 vs 0.45, p=0.018) were increased in children born very preterm. Higher gestational age associated with larger corpus callosum area (ß=10.7, 95%CI 0.59-20.8). Focal white matter lesions were observed in 15 (32%) of very preterm children and in 1 (5%) of full-term controls. Increased posterior ventricle index increased risk for visual acuity ≤1.0 (OR=1.07×1011, 95%CI=7.78-1.48×1021) and contrast sensitivity <0.5 (OR=2.6×1027, 95%CI=1.9×108-3.5×1046). Decreased peritrigonal white matter thickness associated with impaired visual acuity (ß=0.04, 95%CI 0.002-0.07). CONCLUSION: More white matter lesions and evidence of lower white matter volume were found in children born very preterm compared with full-term controls at 12-year follow-up. The association between larger posterior ventricle index and reduced visual acuity and contrast sensitivity suggests disturbances of the posterior visual pathway due to diffuse white matter lesions.


Assuntos
Nascimento Prematuro , Substância Branca , Criança , Feminino , Recém-Nascido , Humanos , Adolescente , Lactente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lactente Extremamente Prematuro , Nascimento Prematuro/patologia , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
12.
Mol Cell Neurosci ; 126: 103864, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268283

RESUMO

Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.


Assuntos
Lesões Encefálicas , Substância Branca , Recém-Nascido , Humanos , Gravidez , Feminino , Oxigênio/metabolismo , Doenças Neuroinflamatórias , Recém-Nascido Prematuro , Bainha de Mielina/metabolismo , Encéfalo/metabolismo , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Lesões Encefálicas/metabolismo
13.
J Ultrasound Med ; 43(5): 899-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38269595

RESUMO

OBJECTIVES: To develop and evaluate a multiplanar radiomics model based on cranial ultrasound (CUS) to predict white matter injury (WMI) in premature infants and explore its correlation with neurodevelopment. METHODS: We retrospectively reviewed 267 premature infants. The radiomics features were extracted from five standard sections of CUS. The Spearman's correlation coefficient combined with the least absolute shrinkage and selection operator (LASSO) was applied to select features and build radiomics signature, and a multiplanar radiomics model was constructed based on the radiomics signature of five planes. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC). Infants with WMI were re-examined by ultrasound at 2 and 4 weeks after birth, and the recovery degree of WMI was evaluated using multiplanar radiomics. The relationship between WMI and the recovery degree and neurodevelopment was analyzed. RESULTS: The AUC of the multiplanar radiomics in the training and validation sets were 0.94 and 0.91, respectively. The neurodevelopmental function scores in infants with WMI were significantly lower than those in healthy preterm infants and full-term newborns (P < .001). There were statistically significant differences in the neurodevelopmental function scores of infants between the 2- and 4-week lesion disappearance and 4-week lesion persistence (P < .001). CONCLUSIONS: The multiplanar radiomics model showed a good performance in predicting the WMI of premature infants. It can not only provide objective and accurate results but also dynamically monitor the degree of recovery of WMI to predict the prognosis of premature infants.


Assuntos
Lesões Encefálicas , Substância Branca , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Substância Branca/diagnóstico por imagem , Estudos Retrospectivos , Radiômica
14.
Ecotoxicol Environ Saf ; 281: 116638, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944013

RESUMO

Studies have highlighted a possible link between air pollution and cerebral small vessel disease (CSVD) imaging markers. However, the exact association and effects of polygenic risk score (PRS) defined genetic susceptibility remains unclear. This cross-sectional study used data from the UK Biobank. Participants aged 40-69 years were recruited between the year 2006 and 2010. The annual average concentrations of NOX, NO2, PM2.5, PM2.5-10, PM2.5 absorbance, and PM10, were estimated, and joint exposure to multiple air pollutants was reflected in the air pollution index (APEX). Air pollutant exposure was classified into the low (T1), intermediate (T2), and high (T3) tertiles. Three CSVD markers were used: white matter hyper-intensity (WMH), mean diffusivity (MD), and fractional anisotropy (FA). The first principal components of the MD and FA measures in the 48 white matter tracts were analysed. The sample consisted of 44,470 participants from the UK Biobank. The median (T1-T3) concentrations of pollutants were as follows: NO2, 25.5 (22.4-28.7) µg/m3; NOx, 41.3 (36.2-46.7) µg/m3; PM10, 15.9 (15.4-16.4) µg/m3; PM2.5, 9.9 (9.5-10.3) µg/m3; PM2.5 absorbance, 1.1 (1.0-1.2) per metre; and PM2.5-10, 6.1 (5.9-6.3) µg/m3. Compared with the low group, the high group's APEX, NOX, and PM2.5 levels were associated with increased WMH volumes, and the estimates (95 %CI) were 0.024 (0.003, 0.044), 0.030 (0.010, 0.050), and 0.032 (0.011, 0.053), respectively, after adjusting for potential confounders. APEX, PM10, PM2.5 absorbance, and PM2.5-10 exposure in the high group were associated with increased FA values compared to that in the low group. Sex-specific analyses revealed associations only in females. Regarding the combined associations of air pollutant exposure and PRS-defined genetic susceptibility with CSVD markers, the associations of NO2, NOX, PM2.5, and PM2.5-10 with WMH were more profound in females with low PRS-defined genetic susceptibility, and the associations of PM10, PM2.5, and PM2.5 absorbance with FA were more profound in females with higher PRS-defined genetic susceptibility. Our study demonstrated that air pollutant exposure may be associated with CSVD imaging markers, with females being more susceptible, and that PRS-defined genetic susceptibility may modify the associations of air pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças de Pequenos Vasos Cerebrais , Exposição Ambiental , Predisposição Genética para Doença , Material Particulado , Humanos , Pessoa de Meia-Idade , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/induzido quimicamente , Feminino , Masculino , Poluentes Atmosféricos/toxicidade , Idoso , Estudos Transversais , Adulto , Poluição do Ar/efeitos adversos , Poluição do Ar/estatística & dados numéricos , Reino Unido , Biomarcadores
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 181-187, 2024 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-38436317

RESUMO

OBJECTIVES: To investigate the effects of α1-antitrypsin (AAT) on motor function in adult mice with immature brain white matter injury. METHODS: Five-day-old C57BL/6J mice were randomly assigned to the sham surgery group (n=27), hypoxia-ischemia (HI) + saline group (n=27), and HI+AAT group (n=27). The HI white matter injury mouse model was established using HI methods. The HI+AAT group received intraperitoneal injections of AAT (50 mg/kg) 24 hours before HI, immediately after HI, and 72 hours after HI; the HI+saline group received intraperitoneal injections of the same volume of saline at the corresponding time points. Brain T2-weighted magnetic resonance imaging scans were performed at 7 and 55 days after modeling. At 2 months of age, adult mice were evaluated for static, dynamic, and coordination parameters using the Catwalk gait analysis system. RESULTS: Compared to the sham surgery group, mice with HI injury showed high signal intensity on brain T2-weighted magnetic resonance imaging at 7 days after modeling, indicating significant white matter injury. The white matter injury persisted at 55 days after modeling. In comparison to the sham surgery group, the HI+saline group exhibited decreased paw print area, maximum contact area, average pressure, maximum pressure, paw print width, average velocity, body velocity, stride length, swing speed, percentage of gait pattern AA, and percentage of inter-limb coordination (left hind paw → left front paw) (P<0.05). The HI+saline group showed increased inter-paw distance, percentage of gait pattern AB, and percentage of phase lag (left front paw → left hind paw) compared to the sham surgery group (P<0.05). In comparison to the HI+saline group, the HI+AAT group showed increased average velocity, body velocity, stride length, and swing speed (right front paw) (P<0.05). CONCLUSIONS: The mice with immature brain white matter injury may exhibit significant motor dysfunction in adulthood, while the use of AAT can improve some aspects of their motor function.


Assuntos
Substância Branca , Animais , Camundongos , Camundongos Endogâmicos C57BL , Substância Branca/diagnóstico por imagem , Encéfalo , Modelos Animais de Doenças , Hipóxia
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660904

RESUMO

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Assuntos
Animais Recém-Nascidos , Transplante de Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical , Substância Branca , Animais , Ratos , Humanos , Cordão Umbilical/citologia , Substância Branca/patologia , Substância Branca/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/análise , Células-Tronco Mesenquimais , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Masculino , Apoptose , Feminino , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
17.
J Neurosci ; 42(9): 1820-1844, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34992132

RESUMO

Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the progressive hydrocephalus (prh) mutant which contains a point mutation in the Ccdc39 gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal prh mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the prh mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in prh mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the prh mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.SIGNIFICANCE STATEMENT In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse prh genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the prh mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.


Assuntos
Hidrocefalia , Microglia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Hidrocefalia/tratamento farmacológico , Indazóis , Camundongos , Gravidez , Propionatos
18.
J Neurosci ; 42(45): 8542-8555, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36198499

RESUMO

The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Camundongos Knockout
19.
J Neurochem ; 167(4): 489-504, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823326

RESUMO

Chronic cerebral hypoperfusion leads to sustained demyelination and a unique response of microglia. Triggering receptor expressed on myeloid cells 2 (Trem2), which is expressed exclusively on microglia in the central nervous system (CNS), plays an essential role in microglial response in various CNS disorders. However, the specific role of Trem2 in chronic cerebral hypoperfusion has not been elucidated. In this study, we investigated the specific role of Trem2 in a mouse model of chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis (BCAS). Our results showed that chronic hypoperfusion induced white matter demyelination, microglial phagocytosis, and activation of the microglial autophagic-lysosomal pathway, accompanied by an increase in Trem2 expression. After Trem2 knockout, we observed attenuation of white matter lesions and microglial response. Trem2 deficiency also suppressed microglial phagocytosis and relieved activation of the autophagic-lysosomal pathway, leading to microglial polarization towards anti-inflammatory and homeostatic phenotypes. Furthermore, Trem2 knockout inhibited lipid droplet accumulation in microglia in vitro. Collectively, these findings suggest that Trem2 deficiency ameliorated microglial phagocytosis and autophagic-lysosomal activation in hypoperfusion-induced white matter injury, and could be a promising target for the treatment of chronic cerebral hypoperfusion.


Assuntos
Isquemia Encefálica , Doenças Desmielinizantes , Substância Branca , Animais , Camundongos , Substância Branca/patologia , Microglia/metabolismo , Fagocitose , Isquemia Encefálica/metabolismo , Lisossomos/metabolismo , Doenças Desmielinizantes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
20.
J Neurochem ; 166(2): 280-293, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309616

RESUMO

Neuroinflammation has been reported to be associated with white matter injury (WMI) after subarachnoid hemorrhage (SAH). As the main resident immune cells of the brain, microglia can be activated into proinflammatory and anti-inflammatory phenotypes. Toll-like receptor 4 (TLR4), expressed on the surface of the microglia, plays a key role in microglial inflammation. However, the relationship between TLR4, microglial polarization, and WMI following SAH remains unclear. In this study, a total of 121 male adult C57BL/6 wild-type (WT) mice, 20 WT mice at postnatal day 1 (P1), and 41 male adult TLR4 gene knockout (TLR4-/-) mice were used to investigate the potential role of TLR4-induced microglial polarization in early WMI after SAH by radiological, histological, microstructural, transcriptional, and cytological evidence. The results indicated that microglial inflammation was associated with myelin loss and axon damage, shown as a decrease in myelin basic protein (MBP), as well as increase in degraded myelin basic protein (dMBP) and amyloid precursor protein (APP). Gene knockout of TLR4 revised microglial polarization toward the anti-inflammatory phenotype and protected the white matter at an early phase after SAH (24 h), as shown through reduction of toxic metabolites, preservation of myelin, reductions in APP accumulation, reductions in white matter T2 hyperintensity, and increases in FA values. Cocultures of microglia and oligodendrocytes, the cells responsible for myelin production and maintenance, were established to further elucidate the relationship between microglial polarization and WMI. In vitro, TLR4 inhibition decreased the expression of microglial MyD88 and phosphorylated NF-κB, thereby inhibiting M1 polarization and mitigating inflammation. Decrease in TLR4 in the microglia increased preservation of neighboring oligodendrocytes. In conclusion, microglial inflammation has dual effects on early WMI after experimental SAH. Future explorations on more clinically relevant methods for modulating neuroinflammation are warranted to combat stroke with both WMI and gray matter destruction.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Substância Branca , Camundongos , Animais , Masculino , Microglia/metabolismo , Hemorragia Subaracnóidea/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/farmacologia , Substância Branca/patologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Inflamação/patologia , Lesões Encefálicas/patologia , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa