Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 56(7): 719-35, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26632776

RESUMO

Iron deficiency is common among graminaceous crops. Ecologically successful wild grasses from iron-limiting habitats are likely to harbour bacteria which secrete efficient high-affinity iron-chelating molecules (siderophores) to solubilize and mobilize iron. Such siderophore-producing rhizobacteria may increase the iron-stress resilience of graminaceous crops. Considering this, 51 rhizobacterial isolates of Dichanthium annulatum from iron-limiting abandoned mine (∼84% biologically unavailable iron) were purified and tested for siderophore production; and efficacy of Arthrobacter globiformis inoculation to increase iron-stress resilience of maize and wheat was also evaluated. 16S rRNA sequence analyses demonstrated that siderophore-producing bacteria were taxonomically diverse (seven genera, nineteen species). Among these, Gram-positive Bacillus (eleven species) was prevalent (76.92%). A. globiformis, a commonly found rhizobacterium of graminaceous crops was investigated in detail. Its siderophore has high iron-chelation capacity (ICC: 13.0 ± 2.4 µM) and effectively dissolutes diverse iron-complexes (FeCl3 : 256.13 ± 26.56 µM/ml; Fe2 O3 red: 84.3 ± 4.74 µM/ml; mine spoil: 123.84 ± 4.38 µM/ml). Siderophore production (ICC) of A. globiformis BGDa404 also varied with supplementation of different iron complexes. In plant bioassay with iron-deficiency sensitive species maize, A. globiformis inoculation triggered stress-associated traits (peroxidase and proline) in roots, enhanced plant biomass, uptake of iron and phosphate, and protein and chlorophyll contents. However, in iron deficiency tolerant species wheat, growth improvement was marginal. The present study illustrates: (i) rhizosphere of D. annulatum colonizing abandoned mine as a "hotspot" of siderophore-producing bacteria; and (ii) potential of A. globiformis BGDa404 inoculation to increase iron-stress resilience in maize. A. globiformis BGDa404 has the potential to develop as bioinoculant to alleviate iron-stress in maize.


Assuntos
Arthrobacter/metabolismo , Bacillus/metabolismo , Ferro/metabolismo , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Arthrobacter/genética , Bacillus/genética , Transporte Biológico , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Zea mays/metabolismo
2.
Environ Sci Pollut Res Int ; 30(19): 54470-54482, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995503

RESUMO

Potentially toxic elements (PTEs) in soils accumulate in plants, obstruct their growth, and pose hazards to the consumer via the food chain. Many kinds of grass, grass-like plants, and other higher plant species have evolved a tolerance to PTEs. Holcus lanatus L., a wild grass, is also tolerant (an excluder) of PTEs, such as arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn). However, the extent of tolerance varies among ecotypes and genotypes. The PTE tolerance mechanism of H. lanatus curtails the typical uptake process and causes a reduced translocation of PTEs from the roots to the shoots, while such a characteristic is useful for contaminated land management. The ecology and response patterns of Holcus lanatus L. to PTEs, along with the associated mechanisms, are reviewed in the current work.


Assuntos
Arsênio , Holcus , Metais Pesados , Poluentes do Solo , Poaceae , Solo , Arsênio/análise , Raízes de Plantas/química , Poluentes do Solo/análise
3.
Front Nutr ; 8: 708122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395501

RESUMO

Background: To ensure safe consumption of gluten-free products, there is a need to understand all sources of unintentional contamination with gluten in the food chain. In this study, ryegrass (Lolium perenne), a common weed infesting cereal crop, is analysed as a potential source of gluten-like peptide contamination. Materials and Methods: Ten ryegrass cultivars were analysed using shotgun proteomics for the presence of proteins from the prolamin superfamily. A relative quantitative assay was developed to detect ryegrass gluten-like peptides in comparison with those found in 10 common wheat cultivars. Results: A total of 19 protein accessions were found across 10 cultivars of ryegrass for the protein families of PF00234-Tryp_alpha_amyl, PF13016-Gliadin, and PF03157-Glutenin_HMW. Protein and peptide homology searches revealed that gliadin-like peptides were similar to avenin and gamma-gliadin peptides. A total of 20 peptides, characteristic of prolamin superfamily proteins, were selected for liquid chromatography mass spectrometry (LC-MS) with multiple reaction monitoring (MRM). Only two of the monitored peptides were detected with high abundance in wheat, and all others were detected in ryegrass. Glutenin and alpha-amylase/trypsin inhibitor peptides were reported for the first time in ryegrass and were noted to be conserved across the Poaceae family. Conclusion: A suite of gluten-like peptides were identified using proteomics that showed consistent abundance across ryegrass cultivars but were not detected in wheat cultivars. These peptides will be useful for differentiating wheat gluten contamination from ryegrass gluten contamination.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa