Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835101

RESUMO

Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease caused by mutations in WFS1 and WFS2 genes that produce wolframin, a protein involved in endoplasmic reticulum calcium homeostasis and cellular apoptosis. Its main clinical features are diabetes insipidus (DI), early-onset non-autoimmune insulin-dependent diabetes mellitus (DM), gradual loss of vision due to optic atrophy (OA) and deafness (D), hence the acronym DIDMOAD. Several other features from different systems have been reported such as urinary tract, neurological, and psychiatric abnormalities. In addition, endocrine disorders that can appear during childhood and adolescence include primary gonadal atrophy and hypergonadotropic hypogonadism in males and menstrual cycle abnormalities in females. Further, anterior pituitary dysfunction with deficient GH and/or ACTH production have been described. Despite the lack of specific treatment for the disease and its poor life expectancy, early diagnosis and supportive care is important for timely identifying and adequately managing its progressive symptoms. The current narrative review focuses on the pathophysiology and the clinical features of the disease, with a special emphasis on its endocrine abnormalities that appear during childhood and adolescence. Further, therapeutic interventions that have been proven to be effective in the management of WS1 endocrine complications are discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Síndrome de Wolfram , Masculino , Feminino , Adolescente , Humanos , Criança , Síndrome de Wolfram/genética , Doenças Neurodegenerativas/complicações , Endocrinologistas , Proteínas de Membrana/genética , Mutação , Diabetes Mellitus Tipo 2/complicações , Pediatras
2.
Genes (Basel) ; 15(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39202345

RESUMO

Wolfram syndrome 1 (WS1) is an uncommon autosomal recessive neurological disorder that is characterized by diabetes insipidus, early-onset non-autoimmune diabetes mellitus, optic atrophy, and deafness (DIDMOAD). Other clinical manifestations are neuropsychiatric symptoms, urinary tract alterations, and endocrinological disorders. The rapid clinical course of WS1 results in death by the age of 30. Severe brain atrophy leads to central respiratory failure, which is the main cause of death in WS1 patients. Mutations in the WFS1 gene, located on chromosome 4p16, account for approximately 90% of WS1 cases. The gene produces wolframin, a transmembrane glycoprotein widely distributed and highly expressed in retinal, neural, and muscular tissues. Wolframin plays a crucial role in the regulation of apoptosis, insulin signaling, and ER calcium homeostasis, as well as the ER stress response. WS1 has been designated as a neurodegenerative and neurodevelopmental disorder due to the numerous abnormalities in the ER stress-mediated system. WS1 is a devastating neurodegenerative disease that affects patients and their families. Early diagnosis and recognition of the initial clinical signs may slow the disease's progression and improve symptomatology. Moreover, genetic counseling should be provided to the patient's relatives to extend multidisciplinary care to their first-degree family members. Regrettably, there are currently no specific drugs for the therapy of this fatal disease. A better understanding of the etiology of WS1 will make possible the development of new therapeutic approaches that may enhance the life expectancy of patients. This review will examine the pathogenetic mechanisms, development, and progression of neuropsychiatric symptoms commonly associated with WS1. A thorough understanding of WS1's neurophysiopathology is critical for achieving the goal of improving patients' quality of life and life expectancy.


Assuntos
Proteínas de Membrana , Síndrome de Wolfram , Humanos , Síndrome de Wolfram/genética , Proteínas de Membrana/genética , Doenças Raras/genética , Mutação
3.
J Pediatr Endocrinol Metab ; 37(5): 434-440, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38465704

RESUMO

OBJECTIVES: Wolfram syndrome is characterised by insulin-dependent diabetes (IDDM), diabetes insipidus (DI), optic atrophy, sensorineural deafness and neurocognitive disorders. The DIDMOAD acronym has been recently modified to DIDMOAUD suggesting the rising awareness of the prevalence of urinary tract dysfunction (UD). End stage renal disease is the commonest cause of mortality in Wolfram syndrome. We present a case series with main objective of long term follow up in four children having Wolfram syndrome with evaluation of their urodynamic profile. METHODS: A prospective follow up of four genetically proven children with Wolfram syndrome presenting to a tertiary care pediatric diabetes clinic in Pune, India was conducted. Their clinical, and urodynamic parameters were reviewed. RESULTS: IDDM, in the first decade, was the initial presentation in all the four children (three male and one female). Three children had persistent polyuria and polydipsia despite having optimum glycemic control; hence were diagnosed to have DI and treated with desmopressin. All four patients entered spontaneous puberty. All patients had homozygous mutation in WFS1 gene; three with exon 8 and one with exon 6 novel mutations. These children with symptoms of lower urinary tract malfunction were further evaluated with urodynamic studies; two of them had hypocontractile detrusor and another had sphincter-detrusor dyssynergia. Patients with hypocontractile bladder were taught clean intermittent catheterization and the use of overnight drain. CONCLUSIONS: We report a novel homozygous deletion in exon 6 of WFS-1 gene. The importance of evaluation of lower urinary tract malfunction is highlighted by our case series. The final bladder outcome in our cases was a poorly contractile bladder in three patients.


Assuntos
Urodinâmica , Síndrome de Wolfram , Adolescente , Criança , Feminino , Humanos , Masculino , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Seguimentos , Proteínas de Membrana/genética , Mutação , Prognóstico , Estudos Prospectivos , Síndrome de Wolfram/genética , Síndrome de Wolfram/complicações , Síndrome de Wolfram/fisiopatologia
4.
J Clin Med ; 13(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39200993

RESUMO

Background: Mutations in Wolfram syndrome 1 (WFS1) cause Wolfram syndrome and autosomal dominant non-syndromic hearing loss DFNA6/14/38. To date, more than 300 pathogenic variants of WFS1 have been identified. Generally, the audiological phenotype of Wolfram syndrome or DFNA6/14/38 is characterized by low-frequency hearing loss; however, this phenotype is largely variable. Hence, there is a need to better understand the diversity in audiological and vestibular profiles associated with WFS1 variants, as this can have significant implications for diagnosis and management. This study aims to investigate the clinical characteristics, audiological phenotypes, and vestibular function in patients with DFNA6/14/38. Methods: Whole-exome or targeted deafness gene panel sequencing was performed to confirm the pathogenic variants in patients with genetic hearing loss. Results: We identified nine independent families with affected individuals who carried a heterozygous pathogenic variant of WFS1. The onset of hearing loss varied from the first to the fifth decade. On a pure-tone audiogram, hearing loss was symmetrical, and the severity ranged from mild to severe. Notably, either both low-frequency and high-frequency or all-frequency-specific hearing loss was observed. However, hearing loss was non-progressive in all types. In addition, vestibular impairment was identified in patients with DFNA6/14/38, indicating that impaired WFS1 may also affect the vestibular organs. Conclusions: Diverse audiological and vestibular profiles were observed in patients with pathogenic variants of WFS1. These findings highlight the importance of comprehensive audiological and vestibular assessments in patients with WFS1 mutations for accurate diagnosis and management.

5.
Front Endocrinol (Lausanne) ; 14: 1155644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383390

RESUMO

Aims: Wolfram Syndrome Spectrum Disorder (WFS1-SD), in its "classic" form, is a rare autosomal recessive disease with poor prognosis and wide phenotypic spectrum. Insulin dependent diabetes mellitus (DM), optic atrophy (OA) diabetes insipidus (DI) and sensorineural deafness (D) are the main features of WFS1-SD. Gonadal dysfunction (GD) has been described mainly in adults with variable prevalence and referred to as a minor clinical feature. This is the first case series investigating gonadal function in a small cohort of paediatric patients affected by WFS1-SD. Methods: Gonadal function was investigated in eight patients (3 male and 5 female) between 3 and 16 years of age. Seven patients have been diagnosed with classic WFS1-SD and one with non-classic WFS1-SD. Gonadotropin and sex hormone levels were monitored, as well as markers of gonadal reserve (inhibin-B and anti-Mullerian hormone). Pubertal progression was assessed according to Tanner staging. Results: Primary hypogonadism was diagnosed in 50% of patients (n=4), more specifically 67% (n=2) of males and 40% of females (n=2). Pubertal delay was observed in one female patient. These data confirm that gonadal dysfunction may be a frequent and underdiagnosed clinical feature in WFS1-SD. Conclusions: GD may represent a frequent and earlier than previously described feature in WFS1-SD with repercussions on morbidity and quality of life. Consequently, we suggest that GD should be included amongst clinical diagnostic criteria for WFS1-SD, as has already been proposed for urinary dysfunction. Considering the heterogeneous and elusive presentation of WFS1-SD, this clinical feature may assist in an earlier diagnosis and timely follow-up and care of treatable associated diseases (i.e. insulin and sex hormone replacement) in these young patients.


Assuntos
Diabetes Mellitus Tipo 1 , Transtornos Gonadais , Síndrome de Wolfram , Adulto , Humanos , Feminino , Masculino , Criança , Síndrome de Wolfram/complicações , Síndrome de Wolfram/diagnóstico , Qualidade de Vida , Gônadas
6.
Artigo em Inglês | MEDLINE | ID: mdl-35206658

RESUMO

Wolfram syndrome 1, a rare autosomal recessive neurodegenerative disease, is caused by mutations in the WFS1 gene. It is characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (DIDMOAD), and other clinical manifestations such as urological and neurological disorders. Here we described the case of a patient with an atypical late-onset Wolfram syndrome 1 without DI. Our WS1 patient was a c.1620_1622delGTG (p.Trp540del)/c.124 C > T (p.Arg42*) heterozygous compound. The p.Arg42* nonsense mutation was also found in heterozygosity in his sister and niece, both suffering from psychiatric disorders. The p.Arg42* nonsense mutation has never been found in WS1 and its pathogenicity is unclear so far. Our study underlined the need to study a greater number of WS1 cases in order to better understand the clinical significance of many WFS1 variants.


Assuntos
Diabetes Insípido , Doenças Neurodegenerativas , Síndrome de Wolfram , Humanos , Proteínas de Membrana/genética , Mutação , Linhagem , Síndrome de Wolfram/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-35328914

RESUMO

Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.


Assuntos
Doenças Neurodegenerativas , Atrofia Óptica , Síndrome de Wolfram , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Atrofia Óptica/complicações , Atrofia Óptica/genética , Atrofia Óptica/terapia , Qualidade de Vida , Síndrome de Wolfram/diagnóstico , Síndrome de Wolfram/genética , Síndrome de Wolfram/terapia
8.
Life Sci ; 309: 120924, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063978

RESUMO

AIMS: The early postnatal dietary intake has been considered a crucial factor affecting the offspring later life metabolic status. Consistently, this study investigated the oxidative and endoplasmic reticulum (ER) stress interventions in the induction of adverse metabolic effects due to the high-fat high-fructose diet (HFHFD) consumption from birth to young adulthood in rat offspring. MATERIALS AND METHODS: After delivery, the dams with their pups were randomly allocated into the normal diet (ND) and HFHFD groups. At weaning, the male offspring were divided into ND-None, ND-DMSO, ND-4-phenyl butyric acid (4-PBA), HFHFD-None, HFHFD-DMSO, and HFHFD-4-PBA groups and fed on their respected diets for five weeks. Then, the drug was injected for ten days. Subsequently, glucose and lipid metabolism parameters, oxidative and ER stress markers, and Wolfram syndrome1 (Wfs1) expression were assessed. KEY FINDINGS: In the HFHFD group, anthropometrical parameters, plasma high-density lipoprotein (HDL), and glucose-stimulated insulin secretion and content were decreased. Whereas, the levels of plasma leptin, low-density lipoprotein (LDL) and glucose, hypothalamic leptin, pancreatic catalase activity and glutathione (GSH), pancreatic and hypothalamic malondialdehyde (MDA), binding immunoglobulin protein (BIP) and C/EBP homologous protein (CHOP), and pancreatic WFS1 protein were increased. 4-PBA administration in the HFHFD group, decreased the hypothalamic and pancreatic MDA, BIP and CHOP levels, while, increased the Insulin mRNA and glucose-stimulated insulin secretion and content. SIGNIFICANCE: HFHFD intake from birth to young adulthood through the development of pancreatic and hypothalamic oxidative and ER stress, increased the pancreatic WFS1 protein and impaired glucose and lipid homeostasis in male rat offspring.


Assuntos
Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Frutose , Estresse Oxidativo , Animais , Masculino , Ratos , Ácido Butírico/farmacologia , Catalase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dimetil Sulfóxido/farmacologia , Frutose/efeitos adversos , Glucose/farmacologia , Glutationa/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Malondialdeído/farmacologia , RNA Mensageiro/metabolismo , Tungstênio/farmacologia
9.
AACE Clin Case Rep ; 8(3): 128-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602877

RESUMO

Objective: Early diagnosis of syndromic monogenic diabetes allows for proper management and can lead to improved quality of life in the long term. This report aimed to describe 2 genetically confirmed cases of Wolfram syndrome, a rare endoplasmic reticulum disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Case Report: A 16-year-old Caucasian male patient and a 25-year-old Caucasian female patient with a history of diabetes mellitus and optic nerve atrophy presented at our medical center. Both patients were initially diagnosed with type 1 diabetes but negative for islet autoantibodies. Their body mass indexes were under 25 at the diagnosis. Their history and presentation were highly suspicious for Wolfram syndrome. Discussion: The genetic tests revealed a known Wolfram syndrome 1 (WFS1) pathogenic variant (homozygous) in the 16-year-old male patient and 2 known WFS1 pathogenic variants (compound heterozygous) in the 25-year-old female patient with diabetes mellitus and optic nerve atrophy, confirming the diagnosis of Wolfram syndrome. The first patient had a moderate form, and the second patient had a milder form of Wolfram syndrome. Conclusion: Providers should consider monogenic diabetes genetic testing, including WFS1 gene, for patients with early-onset diabetes who are negative for islet autoantibodies and lean. Two patients described in this article could have been diagnosed with Wolfram syndrome before they developed optic nerve atrophy. Genetic testing is a valuable tool for the early detection of Wolfram syndrome, which leads to proper management and improved quality of life in patients with this rare medical condition.

10.
Front Pediatr ; 9: 755365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970515

RESUMO

Aims: Wolfram syndrome type 1 is a rare recessive monogenic form of insulin-dependent diabetes mellitus with progressive neurodegeneration, poor prognosis, and no cure. Based on preclinical evidence we hypothesized that liraglutide, a glucagon-like peptide-1 receptor agonist, may be repurposed for the off-label treatment of Wolfram Syndrome type 1. We initiated an off-label treatment to investigate the safety, tolerability, and efficacy of liraglutide in pediatric patients with Wolfram Syndrome type 1. Methods: Pediatric patients with genetically confirmed Wolfram Syndrome type 1 were offered off-label treatment approved by The Regional Network Coordination Center for Rare Diseases, Pharmacological Research IRCCS Mario Negri, and the internal ethics committee. Four patients were enrolled; none refused nor were excluded or lost during follow-up. Liraglutide was administered as a daily subcutaneous injection. Starting dose was 0.3 mg/day. The dose was progressively increased as tolerated, up to the maximum dose of 1.8 mg/day. The primary outcome was evaluating the safety, tolerability, and efficacy of liraglutide in Wolfram Syndrome type 1 patients. Secondary endpoints were stabilization or improvement of C-peptide secretion as assessed by the mixed meal tolerance test. Exploratory endpoints were stabilization of neurological and neuro-ophthalmological degeneration, assessed by optical coherence tomography, electroretinogram, visual evoked potentials, and magnetic resonance imaging. Results: Four patients aged between 10 and 14 years at baseline were treated with liraglutide for 8-27 months. Liraglutide was well-tolerated: all patients reached and maintained the maximum dose, and none withdrew from the study. Only minor transient gastrointestinal symptoms were reported. No alterations in pancreatic enzymes, calcitonin, or thyroid hormones were observed. At the latest follow-up, the C-peptide area under the curve ranged from 81 to 171% of baseline. Time in range improved in two patients. Neuro-ophthalmological and neurophysiological disease parameters remained stable at the latest follow-up. Conclusions: We report preliminary data on the safety, tolerability, and efficacy of liraglutide in four pediatric patients with Wolfram Syndrome type 1. The apparent benefits both in terms of residual C-peptide secretion and neuro-ophthalmological disease progression warrant further studies on the repurposing of glucagon-like peptide-1 receptor agonists as disease-modifying agents for Wolfram Syndrome type 1.

11.
Gene ; 528(2): 309-13, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23845777

RESUMO

Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder that represents a likely source of childhood diabetes especially among countries in the consanguinity belt. The main responsible gene is WFS1 for which over one hundred mutations have been reported from different ethnic groups. The aim of this study was to identify the molecular etiology of WS and to perform a possible genotype-phenotype correlation in Iranian kindred. An Iranian family with two patients was clinically studied and WS was suspected. Genetic linkage analysis via 5 STR markers was carried out. For identification of mutations, DNA sequencing of WFS1 including all the exons, exon-intron boundaries and the promoter was performed. Linkage analysis indicated linkage to the WFS1 region. After DNA sequencing of WFS1, one novel pathogenic mutation, which causes frameshift alteration c.2177_2178insTCTTC (or c.2173_2177dupTCTTC) in exon eight, was found. The genotype-phenotype correlation analysis suggests that the presence of the homozygous mutation may be associated with early onset of disease symptoms. This study stresses the necessity of considering the molecular analysis of WFS1 in childhood diabetes with some symptoms of WS.


Assuntos
Mutação da Fase de Leitura , Proteínas de Membrana/genética , Mutagênese Insercional , Síndrome de Wolfram/genética , Sequência de Aminoácidos , Sequência de Bases , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Ligação Genética , Humanos , Irã (Geográfico) , Proteínas de Membrana/química , Repetições de Microssatélites , Dados de Sequência Molecular , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa