Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.769
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 537-556, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33577346

RESUMO

The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.


Assuntos
Doenças Autoimunes , Interleucina-17 , Animais , Doenças Autoimunes/etiologia , Citocinas , Humanos , Intenção , Receptores de Interleucina-17
2.
Cell ; 185(25): 4717-4736.e25, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493752

RESUMO

Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.


Assuntos
Rena , Cicatrização , Adulto , Animais , Humanos , Cicatriz/patologia , Fibroblastos/patologia , Transplante de Pele , Pele/patologia , Feto/patologia
3.
Annu Rev Cell Dev Biol ; 34: 333-355, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028641

RESUMO

Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.


Assuntos
Células Estreladas do Fígado/metabolismo , Inflamação/genética , Neoplasias/genética , Células Estreladas do Pâncreas/metabolismo , Transdiferenciação Celular/genética , Células Estreladas do Fígado/patologia , Humanos , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Neoplasias/patologia , Pâncreas/lesões , Pâncreas/metabolismo , Pâncreas/patologia , Células Estreladas do Pâncreas/patologia , Microambiente Tumoral/genética , Cicatrização
4.
Cell ; 167(5): 1323-1338.e14, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863246

RESUMO

Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.


Assuntos
Envelhecimento/fisiologia , Subpopulações de Linfócitos/citologia , Transdução de Sinais , Cicatrização , Animais , Interleucina-6/administração & dosagem , Queratinócitos/metabolismo , Camundongos , Pele/citologia , Fenômenos Fisiológicos da Pele , Cicatrização/efeitos dos fármacos
5.
Immunity ; 53(2): 371-383.e5, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32673566

RESUMO

Cutaneous wound healing is associated with the unpleasant sensation of itching. Here we investigated the mechanisms underlying this type of itch, focusing on the contribution of soluble factors released during healing. We found high amounts of interleukin 31 (IL-31) in skin wound tissue during the peak of itch responses. Il31-/- mice lacked wound-induced itch responses. IL-31 was released by dermal conventional type 2 dendritic cells (cDC2s) recruited to wounds and increased itch sensory neuron sensitivity. Transfer of cDC2s isolated from late-stage wounds into healthy skin was sufficient to induce itching in a manner dependent on IL-31 expression. Addition of the cytokine TGF-ß1, which promotes wound healing, to dermal DCs in vitro was sufficient to induce Il31 expression, and Tgfbr1f/f CD11c-Cre mice exhibited reduced scratching and decreased Il31 expression in wounds in vivo. Thus, cDC2s promote itching during skin would healing via a TGF-ß-IL-31 axis with implications for treatment of wound itching.


Assuntos
Interleucinas/metabolismo , Células de Langerhans/fisiologia , Prurido/patologia , Células Receptoras Sensoriais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Feminino , Humanos , Interleucinas/genética , Células de Langerhans/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de Interleucina/metabolismo , Pele/citologia , Pele/crescimento & desenvolvimento , Pele/lesões , Canais de Cátion TRPV/metabolismo , Cicatrização/fisiologia
6.
Immunity ; 51(2): 241-257.e9, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31303399

RESUMO

Cytokine tumor necrosis factor (TNF)-mediated macrophage polarization is important for inflammatory disease pathogenesis, but the mechanisms regulating polarization are not clear. We performed transcriptomic and epigenomic analysis of the TNF response in primary human macrophages and revealed late-phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from an inflammatory to a reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a function and mechanism of action for SREBPs in augmenting TNF-induced macrophage activation and inflammation and open therapeutic avenues for promoting wound repair.


Assuntos
Inflamação/metabolismo , Macrófagos/imunologia , Peritonite/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dermatopatias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Epigenômica , Feminino , Humanos , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Cicatrização
7.
Immunol Rev ; 323(1): 241-256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553621

RESUMO

The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.


Assuntos
Doenças Autoimunes , Autoimunidade , Células Dendríticas , Inflamação , Interferon Tipo I , Transdução de Sinais , Receptores Toll-Like , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Inflamação/imunologia , Receptores Toll-Like/metabolismo , Doenças Autoimunes/imunologia , Interferon Tipo I/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Tolerância Imunológica , Imunomodulação , Quimiocinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771877

RESUMO

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Assuntos
Nanopartículas , RNA Mensageiro , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanopartículas/química , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-4/metabolismo , Diabetes Mellitus Experimental , Humanos , Lipídeos/química , Modelos Animais de Doenças , Masculino , Lipossomos
9.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527207

RESUMO

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Assuntos
Platina , Infecção dos Ferimentos , Humanos , Platina/farmacologia , Cicatrização , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química , Seda/química , Bactérias , Hidrogéis/farmacologia
10.
Immunol Rev ; 317(1): 30-41, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908237

RESUMO

Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.


Assuntos
Asma , Leucotrieno B4 , Camundongos , Humanos , Animais , Pele , Cicatrização , Receptores do Leucotrieno B4/genética
11.
EMBO J ; 41(7): e109470, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212000

RESUMO

Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that ß1 integrin from αSMA+ myofibroblasts, but not TGFßRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in ß1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.


Assuntos
Colágeno Tipo I , Miofibroblastos , Cicatrização , Animais , Colágeno Tipo I/genética , Fibroblastos , Integrina beta1/genética , Camundongos , Pele
12.
EMBO J ; 41(12): e109992, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35262206

RESUMO

Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo-membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub-cellular membranes, as shown by its suppression of experimentally induced laminopathy-like nuclear defects. Our findings reveal a function for TORC1-mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.


Assuntos
Autofagossomos , Autofagia , Animais , Autofagossomos/metabolismo , Membrana Celular , Drosophila , Células Gigantes/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
13.
Development ; 150(3)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718794

RESUMO

The eighth EMBO conference in the series 'The Molecular and Cellular Basis of Regeneration and Tissue Repair' took place in Barcelona (Spain) in September 2022. A total of 173 researchers from across the globe shared their latest advances in deciphering the molecular and cellular basis of wound healing, tissue repair and regeneration, as well as their implications for future clinical applications. The conference showcased an ever-expanding diversity of model organisms used to identify mechanisms that promote regeneration. Over 25 species were discussed, ranging from invertebrates to humans. Here, we provide an overview of the exciting topics presented at the conference, highlighting novel discoveries in regeneration and perspectives for regenerative medicine.


Assuntos
Medicina Regenerativa , Cicatrização , Humanos , Espanha
14.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897356

RESUMO

Dying cells in the epithelia communicate with neighboring cells to initiate coordinated cell removal to maintain epithelial integrity. Naturally occurring apoptotic cells are mostly extruded basally and engulfed by macrophages. Here, we have investigated the role of Epidermal growth factor (EGF) receptor (EGFR) signaling in the maintenance of epithelial homeostasis. In Drosophila embryos, epithelial tissues undergoing groove formation preferentially enhanced extracellular signal-regulated kinase (ERK) signaling. In EGFR mutant embryos at stage 11, sporadic apical cell extrusion in the head initiates a cascade of apical extrusions of apoptotic and non-apoptotic cells that sweeps the entire ventral body wall. Here, we show that this process is apoptosis dependent, and clustered apoptosis, groove formation, and wounding sensitize EGFR mutant epithelia to initiate massive tissue disintegration. We further show that tissue detachment from the vitelline membrane, which frequently occurs during morphogenetic processes, is a key trigger for the EGFR mutant phenotype. These findings indicate that, in addition to cell survival, EGFR plays a role in maintaining epithelial integrity, which is essential for protecting tissues from transient instability caused by morphogenetic movement and damage.


Assuntos
Drosophila , Receptores ErbB , Transdução de Sinais , Animais , Drosophila/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Epitélio/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação
15.
Immunity ; 47(4): 752-765.e5, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045904

RESUMO

After traumatic injury, some cells function as detectors to sense injury and to modulate the local immune response toward a restitution phase by affecting the local cytokine milieu. Using intravital microscopy, we observed that patrolling invariant natural killer T (iNKT) cells were initially excluded from a site of hepatic injury but subsequently were strategically arrested first via self-antigens and then by cytokines, circumscribing the injured site at exactly the location where monocytes co-localized and hepatocytes proliferated. Activation of iNKT cells by self-antigens resulted in the production of interleukin-4 (IL-4) but not interferon-γ (IFN-γ). This promoted increased hepatocyte proliferation, monocyte transition (from Ly6Chi to Ly6Clo), and improved healing where IL-4 from iNKT cells was critical for these processes. Disruption of any of these mechanisms led to delayed wound healing. We have shown that self-antigen-driven iNKT cells function as sensors and orchestrators of the transformation from inflammation to tissue restitution for essential timely wound repair.


Assuntos
Hepatócitos/imunologia , Inflamação/imunologia , Fígado/imunologia , Células T Matadoras Naturais/imunologia , Animais , Autoantígenos/imunologia , Proliferação de Células , Hepatócitos/metabolismo , Hepatócitos/patologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Células de Kupffer/imunologia , Fígado/lesões , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Monócitos/imunologia , Fatores de Tempo , Cicatrização/imunologia
16.
Proc Natl Acad Sci U S A ; 120(13): e2217576120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943878

RESUMO

Diabetes can result in impaired corneal wound healing. Mitochondrial dysfunction plays an important role in diabetic complications. However, the regulation of mitochondria function in the diabetic cornea and its impacts on wound healing remain elusive. The present study aimed to explore the molecular basis for the disturbed mitochondrial metabolism and subsequent wound healing impairment in the diabetic cornea. Seahorse analysis showed that mitochondrial oxidative phosphorylation is a major source of ATP production in human corneal epithelial cells. Live corneal biopsy punches from type 1 and type 2 diabetic mouse models showed impaired mitochondrial functions, correlating with impaired corneal wound healing, compared to nondiabetic controls. To approach the molecular basis for the impaired mitochondrial function, we found that Peroxisome Proliferator-Activated Receptor-α (PPARα) expression was downregulated in diabetic human corneas. Even without diabetes, global PPARα knockout mice and corneal epithelium-specific PPARα conditional knockout mice showed disturbed mitochondrial function and delayed wound healing in the cornea, similar to that in diabetic corneas. In contrast, fenofibrate, a PPARα agonist, ameliorated mitochondrial dysfunction and enhanced wound healing in the corneas of diabetic mice. Similarly, corneal epithelium-specific PPARα transgenic overexpression improved mitochondrial function and enhanced wound healing in the cornea. Furthermore, PPARα agonist ameliorated the mitochondrial dysfunction in primary human corneal epithelial cells exposed to diabetic stressors, which was impeded by siRNA knockdown of PPARα, suggesting a PPARα-dependent mechanism. These findings suggest that downregulation of PPARα plays an important role in the impaired mitochondrial function in the corneal epithelium and delayed corneal wound healing in diabetes.


Assuntos
Diabetes Mellitus Experimental , PPAR alfa , Camundongos , Humanos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Córnea/metabolismo , Cicatrização/fisiologia , Camundongos Knockout , Mitocôndrias/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(28): e2305085120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399395

RESUMO

Chronic cutaneous wounds remain a persistent unmet medical need that decreases life expectancy and quality of life. Here, we report that topical application of PY-60, a small-molecule activator of the transcriptional coactivator Yes-associated protein (YAP), promotes regenerative repair of cutaneous wounds in pig and human models. Pharmacological YAP activation enacts a reversible pro-proliferative transcriptional program in keratinocytes and dermal cells that results in accelerated re-epithelization and regranulation of the wound bed. These results demonstrate that transient topical administration of a YAP activating agent may represent a generalizable therapeutic approach to treating cutaneous wounds.


Assuntos
Qualidade de Vida , Cicatrização , Humanos , Animais , Suínos , Cicatrização/fisiologia , Pele/lesões , Queratinócitos/metabolismo , Administração Cutânea
18.
Immunol Rev ; 306(1): 258-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023170

RESUMO

The ability to directly observe leukocyte behavior in vivo has dramatically expanded our understanding of the immune system. Zebrafish are particularly amenable to the high-resolution imaging of leukocytes during both homeostasis and inflammation. Due to its natural transparency, intravital imaging in zebrafish does not require any surgical manipulation. As a result, zebrafish are particularly well-suited for the long-term imaging required to observe the temporal and spatial events during the onset and resolution of inflammation. Here, we review major insights about neutrophil and macrophage function gained from real-time imaging of zebrafish. We discuss neutrophil reverse migration, the process whereby neutrophils leave sites of tissue damage and resolve local inflammation. Further, we discuss the current tools available for investigating immune function in zebrafish and how future studies that simultaneously image multiple leukocyte subsets can be used to further dissect mechanisms that regulate both the onset and resolution of inflammation.


Assuntos
Inflamação , Peixe-Zebra , Animais , Movimento Celular , Humanos , Macrófagos , Neutrófilos
19.
Dev Biol ; 509: 28-42, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342399

RESUMO

The early stages of regeneration after injury are similar to those of wound healing. The ascidian Botrylloides diegensis can regenerate an entire adult from a small fragment of vascular tunic following the removal of all zooids in an injury-induced regeneration model. We investigated the molecular and cellular changes following injury to determine the differences between the healing process and the initiation of whole-body regeneration (WBR). We conducted transcriptome analysis at specific time points during regeneration and wound healing to identify differentially expressed genes (DEGs) and the unique biological processes associated with each state. Our findings revealed 296 DEGs at 10 h post-injury (hpi), with 71 highly expressed in healed tissue and 225 expressed during the WBR process. These DEGs were predicted to play roles in tissue reorganization, integrin signaling, extracellular matrix organization, and the innate immune system. Pathway analysis of the upregulated genes in the healed tunic indicated functional enrichment related to tissue repair, as has been observed in other species. Additionally, we examined the cell types in the tunic and ampullae in both tissue states using histology and in situ hybridization for six genes identified by transcriptome analysis. We observed strong mRNA expression in cells within the WBR tunic, and in small RNA-positive granules near the tunic edge. We hypothesized that many of these genes function in the compaction of the ampullae tunic, which is a pivotal process for WBR and dormancy in B. diegensis, and in an immune response. These findings establish surprising similarities between ascidian regeneration and human wound healing, emphasizing the potential for future investigations into human regenerative and repair mechanisms. This study provides valuable insights into the gene sets specifically activated during regeneration compared to wound healing, shedding light on the divergent activities of these processes.


Assuntos
Urocordados , Animais , Humanos , Urocordados/genética , Perfilação da Expressão Gênica , Transdução de Sinais , Cicatrização/genética
20.
Dev Biol ; 507: 64-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160963

RESUMO

Regeneration is a fascinating phenomenon observed in various organisms across the animal kingdom. Different orders of class Insecta are reported to possess comprehensive regeneration abilities. Several signalling molecules, such as morphogens, growth factors, and others trigger a cascade of events that promote wound healing, blastema formation, growth, and repatterning. Furthermore, epigenetic regulation has emerged as a critical player in regulating the process of regeneration. This report highlights the major breakthrough research on wound healing and tissue regeneration. Exploring and reviewing the molecular basis of regeneration can be helpful in the area of regenerative medicine advancements. The understanding gathered from this framework can potentially contribute to hypothesis designing with implications in the field of synthetic biology and human health.


Assuntos
Epigênese Genética , Transdução de Sinais , Animais , Humanos , Insetos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa