Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 3234: 141-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507205

RESUMO

The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.


Assuntos
Elétrons , Proteínas , Cristalografia por Raios X , Proteínas/química , Raios X , Lasers
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa