Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839041

RESUMO

Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.

2.
Adv Sci (Weinh) ; 8(12): e2004391, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165903

RESUMO

Gas-based therapy has emerged as a new green therapy strategy for anti-tumor treatment. However, the therapeutic efficacy is still restricted by the deep tissue controlled release, poor lymphocytic infiltration, and inherent immunosuppressive tumor microenvironment (TME). Herein, a new type of nanovaccine is designed by integrating low dose soft X-ray-triggered CO releasing lanthanide scintillator nanoparticles (ScNPs: NaLuF4 :Gd,Tb@NaLuF4 ) with photo-responsive CO releasing moiety (PhotoCORM) for synergistic CO gas/immuno-therapy of tumors. The designed nanovaccine presents significantly boosted radioluminescence and enables deep tissue CO generation at unprecedented tissue depths of 5 cm under soft X-ray irradiation. Intriguingly, CO as a superior immunogenic cell death (ICD) inducer further reverses the deep tissue immunosuppressive TME and concurrently activates adaptive anti-tumor immunity through efficient reactive oxygen species (ROS) generation. More importantly, the designed nanovaccine presents efficient growth inhibition of both local and distant tumors via a soft X-ray activated systemic anti-tumor immunoresponse. This work provides a new strategy of designing anti-tumor nanovaccines for synergistic deep tissue gas-therapy and remote soft X-ray photoactivation of the immune response.


Assuntos
Vacinas Anticâncer/imunologia , Morte Celular Imunogênica/efeitos dos fármacos , Elementos da Série dos Lantanídeos/farmacologia , Nanopartículas , Neoplasias/imunologia , Animais , Monóxido de Carbono , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Morte Celular Imunogênica/imunologia , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Raios X
3.
ACS Appl Mater Interfaces ; 9(27): 22132-22142, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28603963

RESUMO

Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) are considered as new alternative optical probes due to being free of autofluorescence, benefited from the self-sustained emission after excitation and high signal-to-noise ratio. However, the NIR-emitted PLNPs always present a short decay time and require excitation by ultraviolet or visible light with a short penetrable depth, remarkably hindering their applications for in vivo long-term tracking and imaging. Therefore, it is important to develop NIR-emitted PLNPs with in vivo activation nature by new excitation sources with deeper penetrating depths. Here, we propose a new type of X-ray-activated ZnGa2O4:Cr PLNPs (X-PLNPs) with efficient NIR persistent emission and rechargeable activation features, in which both the excitation and emission possess a high penetrable nature in vivo. These X-PLNPs exhibit long-lasting, up to 6 h, NIR emission at 700 nm after the stoppage of the X-ray excitation source. More importantly, the designed X-PLNPs can be readily reactivated by a soft X-ray excitation source with low excitation power (45 kVp, 0.5 mA) to restore in vivo bioimaging signals even at 20 mm depth. Renewable in vivo whole-body bioimaging was also successfully achieved via intravenous injection/oral administration of X-PLNPs after in situ X-ray activation. This is the first time that NIR-emitted PLNPs have been demonstrated to be recharged by X-ray light for deep-tissue in vivo bioimaging, which paves the way for in vivo renewable bioimaging using PLNPs and makes the PLNPs more competitive in bioimaging area.


Assuntos
Luminescência , Nanopartículas , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa